Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04359
Cited By
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
11 February 2020
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness of Bayesian Neural Networks to Gradient-Based Attacks"
50 / 55 papers shown
Title
Feature Statistics with Uncertainty Help Adversarial Robustness
Ran A. Wang
Xinlei Zhou
Rihao Li
Meng Hu
Wenhui Wu
Yuheng Jia
AAML
77
0
0
26 Mar 2025
Poisoning Bayesian Inference via Data Deletion and Replication
Matthieu Carreau
Roi Naveiro
William N. Caballero
AAML
KELM
55
0
0
06 Mar 2025
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
62
0
0
20 Feb 2025
Variational Bayesian Bow tie Neural Networks with Shrinkage
Alisa Sheinkman
Sara Wade
BDL
UQCV
37
0
0
17 Nov 2024
Transferable 3D Adversarial Shape Completion using Diffusion Models
Xuelong Dai
Bin Xiao
DiffM
3DPC
35
0
0
14 Jul 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
On the Convergence of Locally Adaptive and Scalable Diffusion-Based Sampling Methods for Deep Bayesian Neural Network Posteriors
Tim Rensmeyer
Oliver Niggemann
UQCV
BDL
OOD
MedIm
28
0
0
13 Mar 2024
Tight Verification of Probabilistic Robustness in Bayesian Neural Networks
Ben Batten
Mehran Hosseini
A. Lomuscio
AAML
11
5
0
21 Jan 2024
Certification of Distributional Individual Fairness
Matthew Wicker
Vihari Piratla
Adrian Weller
19
1
0
20 Nov 2023
Bayesian Neural Networks: A Min-Max Game Framework
Junping Hong
E. Kuruoglu
17
0
0
18 Nov 2023
Uncertainty Quantification in Inverse Models in Hydrology
Somya Sharma Chatterjee
Rahul Ghosh
Arvind Renganathan
Xiang Li
Snigdhansu Chatterjee
John L. Nieber
Christopher J. Duffy
Vipin Kumar
22
0
0
03 Oct 2023
Probabilistic Reach-Avoid for Bayesian Neural Networks
Matthew Wicker
Luca Laurenti
A. Patané
Nicola Paoletti
Alessandro Abate
Marta Z. Kwiatkowska
18
2
0
03 Oct 2023
Improving Transferability of Adversarial Examples via Bayesian Attacks
Qizhang Li
Yiwen Guo
Xiaochen Yang
W. Zuo
Hao Chen
AAML
BDL
24
2
0
21 Jul 2023
A Bayesian approach to quantifying uncertainties and improving generalizability in traffic prediction models
Agnimitra Sengupta
Sudeepta Mondal
A. Das
S. I. Guler
BDL
UQCV
16
11
0
12 Jul 2023
Transgressing the boundaries: towards a rigorous understanding of deep learning and its (non-)robustness
C. Hartmann
Lorenz Richter
AAML
11
2
0
05 Jul 2023
Post-train Black-box Defense via Bayesian Boundary Correction
He-Nan Wang
Yunfeng Diao
AAML
34
1
0
29 Jun 2023
Adversarial Robustness Certification for Bayesian Neural Networks
Matthew Wicker
A. Patané
Luca Laurenti
Marta Z. Kwiatkowska
AAML
23
3
0
23 Jun 2023
BNN-DP: Robustness Certification of Bayesian Neural Networks via Dynamic Programming
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
AAML
82
7
0
19 Jun 2023
Attacks on Online Learners: a Teacher-Student Analysis
R. Margiotta
Sebastian Goldt
G. Sanguinetti
AAML
26
1
0
18 May 2023
Individual Fairness in Bayesian Neural Networks
Alice Doherty
Matthew Wicker
Luca Laurenti
A. Patané
24
5
0
21 Apr 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
32
8
0
17 Mar 2023
Bayesian Neural Networks Avoid Encoding Complex and Perturbation-Sensitive Concepts
Qihan Ren
Huiqi Deng
Yunuo Chen
Siyu Lou
Quanshi Zhang
BDL
AAML
25
10
0
25 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
27
35
0
10 Feb 2023
On the Robustness of Randomized Ensembles to Adversarial Perturbations
Hassan Dbouk
Naresh R Shanbhag
AAML
20
7
0
02 Feb 2023
Feature-Space Bayesian Adversarial Learning Improved Malware Detector Robustness
Bao Gia Doan
Shuiqiao Yang
Paul Montague
O. Vel
Tamas Abraham
S. Çamtepe
S. Kanhere
Ehsan Abbasnejad
D. Ranasinghe
OOD
AAML
29
6
0
30 Jan 2023
Audio-based AI classifiers show no evidence of improved COVID-19 screening over simple symptoms checkers
H. Coppock
G. Nicholson
Ivan Kiskin
Vasiliki Koutra
Kieran Baker
...
Björn W. Schuller
D. Pigoli
S. Gilmour
Stephen J. Roberts
Chris Holmes
49
24
0
15 Dec 2022
Bayesian Learning with Information Gain Provably Bounds Risk for a Robust Adversarial Defense
Bao Gia Doan
Ehsan Abbasnejad
Javen Qinfeng Shi
Damith Ranashinghe
AAML
OOD
24
8
0
05 Dec 2022
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
19
10
0
17 Oct 2022
Probabilistic Inverse Modeling: An Application in Hydrology
Somya Sharma
Rahul Ghosh
Arvind Renganathan
Xiang Li
Snigdhansu Chatterjee
John L. Nieber
C. Duffy
Vipin Kumar
AI4CE
17
1
0
12 Oct 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
35
1
0
02 Aug 2022
On the Robustness of Bayesian Neural Networks to Adversarial Attacks
Luca Bortolussi
Ginevra Carbone
Luca Laurenti
A. Patané
G. Sanguinetti
Matthew Wicker
AAML
16
11
0
13 Jul 2022
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
8
15
0
01 Jul 2022
Learning Uncertainty with Artificial Neural Networks for Improved Predictive Process Monitoring
Hans Weytjens
Jochen De Weerdt
19
17
0
13 Jun 2022
How Sampling Impacts the Robustness of Stochastic Neural Networks
Sina Daubener
Asja Fischer
SILM
AAML
20
1
0
22 Apr 2022
Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks
Adaku Uchendu
Daniel Campoy
Christopher Menart
Alexandra Hildenbrandt
BDL
AAML
14
5
0
16 Nov 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Adversarial for Good? How the Adversarial ML Community's Values Impede Socially Beneficial Uses of Attacks
Kendra Albert
Maggie K. Delano
B. Kulynych
Ramnath Kumar
AAML
14
4
0
11 Jul 2021
Dangers of Bayesian Model Averaging under Covariate Shift
Pavel Izmailov
Patrick K. Nicholson
Sanae Lotfi
A. Wilson
OOD
UQCV
BDL
24
45
0
22 Jun 2021
Machine learning in the social and health sciences
A. Leist
Matthias Klee
Jung Hyun Kim
D. Rehkopf
Stéphane P. A. Bordas
Graciela Muniz-Terrera
Sara Wade
AI4CE
23
4
0
20 Jun 2021
Localized Uncertainty Attacks
Ousmane Amadou Dia
Theofanis Karaletsos
C. Hazirbas
Cristian Canton Ferrer
I. Kabul
E. Meijer
AAML
19
2
0
17 Jun 2021
Certification of Iterative Predictions in Bayesian Neural Networks
Matthew Wicker
Luca Laurenti
A. Patané
Nicola Paoletti
Alessandro Abate
Marta Z. Kwiatkowska
18
11
0
21 May 2021
Adversarial Examples Detection with Bayesian Neural Network
Yao Li
Tongyi Tang
Cho-Jui Hsieh
T. C. Lee
GAN
AAML
30
3
0
18 May 2021
Adversarial Robustness Guarantees for Gaussian Processes
A. Patané
Arno Blaas
Luca Laurenti
L. Cardelli
Stephen J. Roberts
Marta Z. Kwiatkowska
GP
AAML
82
9
0
07 Apr 2021
Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks
Ginevra Carbone
G. Sanguinetti
Luca Bortolussi
FAtt
AAML
11
4
0
22 Feb 2021
Random Projections for Improved Adversarial Robustness
Ginevra Carbone
G. Sanguinetti
Luca Bortolussi
AAML
19
2
0
18 Feb 2021
Bayesian Inference with Certifiable Adversarial Robustness
Matthew Wicker
Luca Laurenti
A. Patané
Zhoutong Chen
Zheng-Wei Zhang
Marta Z. Kwiatkowska
AAML
BDL
20
30
0
10 Feb 2021
The Effect of Prior Lipschitz Continuity on the Adversarial Robustness of Bayesian Neural Networks
Arno Blaas
Stephen J. Roberts
BDL
AAML
54
2
0
07 Jan 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
37
1,877
0
12 Nov 2020
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
13
59
0
12 Nov 2020
Efficient and Transferable Adversarial Examples from Bayesian Neural Networks
Martin Gubri
Maxime Cordy
Mike Papadakis
Yves Le Traon
Koushik Sen
AAML
13
11
0
10 Nov 2020
1
2
Next