Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.06015
Cited By
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
13 February 2020
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable and Practical Natural Gradient for Large-Scale Deep Learning"
9 / 9 papers shown
Title
Eva: A General Vectorized Approximation Framework for Second-order Optimization
Lin Zhang
S. Shi
Bo-wen Li
15
1
0
04 Aug 2023
PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices
Kazuki Osawa
Shigang Li
Torsten Hoefler
AI4CE
33
24
0
25 Nov 2022
Brand New K-FACs: Speeding up K-FAC with Online Decomposition Updates
C. Puiu
14
2
0
16 Oct 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
S. Shi
Wei Wang
Bo-wen Li
28
10
0
30 Jun 2022
Rethinking Exponential Averaging of the Fisher
C. Puiu
16
1
0
10 Apr 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
31
44
0
22 Feb 2022
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
S. Shi
Lin Zhang
Bo-wen Li
24
9
0
14 Jul 2021
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
21
13
0
17 Aug 2020
A block coordinate descent optimizer for classification problems exploiting convexity
Ravi G. Patel
N. Trask
Mamikon A. Gulian
E. Cyr
ODL
22
7
0
17 Jun 2020
1