ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08772
  4. Cited By
Set2Graph: Learning Graphs From Sets

Set2Graph: Learning Graphs From Sets

20 February 2020
Hadar Serviansky
Nimrod Segol
Jonathan Shlomi
Kyle Cranmer
Eilam Gross
Haggai Maron
Y. Lipman
    PINN
    GNN
ArXivPDFHTML

Papers citing "Set2Graph: Learning Graphs From Sets"

12 / 12 papers shown
Title
Hypergraph Structure Inference From Data Under Smoothness Prior
Hypergraph Structure Inference From Data Under Smoothness Prior
Bohan Tang
Siheng Chen
Xiaowen Dong
36
5
0
27 Aug 2023
Learning Hypergraphs From Signals With Dual Smoothness Prior
Learning Hypergraphs From Signals With Dual Smoothness Prior
Bohan Tang
Siheng Chen
Xiaowen Dong
52
8
0
03 Nov 2022
Pure Transformers are Powerful Graph Learners
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
38
187
0
06 Jul 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
  of One-shot Graph Generators
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
33
66
0
04 Apr 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
33
113
0
07 Dec 2021
Top-N: Equivariant set and graph generation without exchangeability
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
63
34
0
05 Oct 2021
Universal Approximation of Functions on Sets
Universal Approximation of Functions on Sets
E. Wagstaff
F. Fuchs
Martin Engelcke
Michael A. Osborne
Ingmar Posner
PINN
32
54
0
05 Jul 2021
Pruning Edges and Gradients to Learn Hypergraphs from Larger Sets
Pruning Edges and Gradients to Learn Hypergraphs from Larger Sets
David W. Zhang
Gertjan J. Burghouts
Cees G. M. Snoek
32
4
0
26 Jun 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
76
185
0
19 Apr 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
30
975
0
19 Feb 2021
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
1