ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10118
  4. Cited By
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks

24 February 2020
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks"

50 / 55 papers shown
Title
Uncertainty-aware Bayesian machine learning modelling of land cover classification
Uncertainty-aware Bayesian machine learning modelling of land cover classification
Samuel Bilson
Anna Pustogvar
UQCV
89
1
0
27 Mar 2025
FedBEns: One-Shot Federated Learning based on Bayesian Ensemble
FedBEns: One-Shot Federated Learning based on Bayesian Ensemble
Jacopo Talpini
Marco Savi
Giovanni Neglia
FedML
Presented at ResearchTrend Connect | FedML on 07 May 2025
76
0
0
19 Mar 2025
EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images
Rohit Menon
Nils Dengler
Sicong Pan
Gokul Krishna Chenchani
Maren Bennewitz
EDL
86
0
0
06 Mar 2025
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
69
1
0
24 Feb 2025
Making Reliable and Flexible Decisions in Long-tailed Classification
Making Reliable and Flexible Decisions in Long-tailed Classification
Bolian Li
Ruqi Zhang
137
0
0
23 Jan 2025
Streamlining Prediction in Bayesian Deep Learning
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
91
2
0
27 Nov 2024
Fine-Grained Uncertainty Quantification via Collisions
Fine-Grained Uncertainty Quantification via Collisions
Jesse Friedbaum
S. Adiga
Ravi Tandon
69
0
0
18 Nov 2024
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Debiasing Mini-Batch Quadratics for Applications in Deep Learning
Lukas Tatzel
Bálint Mucsányi
Osane Hackel
Philipp Hennig
43
0
0
18 Oct 2024
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Linjie Lyu
Ayush Tewari
Marc Habermann
Shunsuke Saito
Michael Zollhöfer
Thomas Leimkühler
Christian Theobalt
UQCV
38
1
0
19 Sep 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
60
1
0
07 Jun 2024
Reparameterization invariance in approximate Bayesian inference
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
42
8
0
05 Jun 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
32
0
0
27 May 2024
LoRA Dropout as a Sparsity Regularizer for Overfitting Control
LoRA Dropout as a Sparsity Regularizer for Overfitting Control
Yang Lin
Xinyu Ma
Xu Chu
Yujie Jin
Zhibang Yang
Yasha Wang
Hong-yan Mei
46
19
0
15 Apr 2024
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Accuracy-Preserving Calibration via Statistical Modeling on Probability Simplex
Yasushi Esaki
Akihiro Nakamura
Keisuke Kawano
Ryoko Tokuhisa
Takuro Kutsuna
38
0
0
21 Feb 2024
Predictive Churn with the Set of Good Models
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
79
7
0
12 Feb 2024
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Burkner
36
2
0
08 Dec 2023
Bayesian Domain Invariant Learning via Posterior Generalization of
  Parameter Distributions
Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
BDL
OOD
16
1
0
25 Oct 2023
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian
  Inference
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian Inference
Siqi Kou
Lei Gan
Dequan Wang
Chongxuan Li
Zhijie Deng
BDL
DiffM
21
7
0
17 Oct 2023
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
16
1
0
11 Aug 2023
Implicit Visual Bias Mitigation by Posterior Estimate Sharpening of a Bayesian Neural Network
Rebecca S Stone
Nishant Ravikumar
A. Bulpitt
David C. Hogg
BDL
34
0
0
29 Mar 2023
Fixing Overconfidence in Dynamic Neural Networks
Fixing Overconfidence in Dynamic Neural Networks
Lassi Meronen
Martin Trapp
Andrea Pilzer
Le Yang
Arno Solin
BDL
26
16
0
13 Feb 2023
A Rigorous Uncertainty-Aware Quantification Framework Is Essential for
  Reproducible and Replicable Machine Learning Workflows
A Rigorous Uncertainty-Aware Quantification Framework Is Essential for Reproducible and Replicable Machine Learning Workflows
Line C. Pouchard
Kristofer G. Reyes
Francis J. Alexander
Byung-Jun Yoon
27
2
0
13 Jan 2023
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
24
63
0
30 Nov 2022
Quantifying Model Uncertainty for Semantic Segmentation using Operators
  in the RKHS
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
21
3
0
03 Nov 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
44
19
0
23 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent
  Kernel
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
24
4
0
30 Sep 2022
Bayesian Continual Learning via Spiking Neural Networks
Bayesian Continual Learning via Spiking Neural Networks
N. Skatchkovsky
Hyeryung Jang
Osvaldo Simeone
BDL
30
17
0
29 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
13
9
0
02 Aug 2022
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
35
13
0
31 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
19
30
0
13 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
27
34
0
29 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
25
28
0
17 Jun 2022
Test-Time Adaptation for Visual Document Understanding
Test-Time Adaptation for Visual Document Understanding
Sayna Ebrahimi
Sercan Ö. Arik
Tomas Pfister
OOD
31
6
0
15 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Multi-model Ensemble Analysis with Neural Network Gaussian Processes
Multi-model Ensemble Analysis with Neural Network Gaussian Processes
Trevor Harris
B. Li
Ryan Sriver
16
5
0
08 Feb 2022
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer
Shiye Lei
Zhuozhuo Tu
Leszek Rutkowski
Feng Zhou
Li Shen
Fengxiang He
Dacheng Tao
BDL
19
2
0
12 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
19
2
0
02 Dec 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
28
80
0
26 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
29
9
0
08 Oct 2021
Activation Functions in Deep Learning: A Comprehensive Survey and
  Benchmark
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
30
640
0
29 Sep 2021
Who's Afraid of Thomas Bayes?
Who's Afraid of Thomas Bayes?
Erick Galinkin
AAML
20
0
0
30 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,109
0
07 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
33
288
0
28 Jun 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
13
15
0
18 Jun 2021
Investigation of Uncertainty of Deep Learning-based Object
  Classification on Radar Spectra
Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
Kanil Patel
William H. Beluch
K. Rambach
Adriana-Eliza Cozma
Michael Pfeiffer
Bin Yang
EDL
UQCV
14
5
0
01 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDL
UQCV
OOD
24
39
0
09 May 2021
Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many
  Localisations
Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many Localisations
Andreas Panteli
Jonas Teuwen
H. Horlings
E. Gavves
21
3
0
21 Apr 2021
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Chao Qu
Wenxin Liu
Camillo J. Taylor
UQCV
BDL
17
31
0
29 Mar 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip H. S. Torr
Y. Gal
UD
UQCV
PER
BDL
13
145
0
23 Feb 2021
12
Next