ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10790
  4. Cited By
Biased Stochastic First-Order Methods for Conditional Stochastic
  Optimization and Applications in Meta Learning

Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning

25 February 2020
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
    ODL
ArXivPDFHTML

Papers citing "Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning"

14 / 14 papers shown
Title
Optimal Guarantees for Algorithmic Reproducibility and Gradient
  Complexity in Convex Optimization
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
Liang Zhang
Junchi Yang
Amin Karbasi
Niao He
24
2
0
26 Oct 2023
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling
Provable Multi-instance Deep AUC Maximization with Stochastic Pooling
Dixian Zhu
Bokun Wang
Zhi Chen
Yaxing Wang
Milan Sonka
Xiaodong Wu
Tianbao Yang
14
3
0
14 May 2023
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
45
8
0
26 Oct 2022
Fairness via Adversarial Attribute Neighbourhood Robust Learning
Fairness via Adversarial Attribute Neighbourhood Robust Learning
Q. Qi
Shervin Ardeshir
Yi Tian Xu
Tianbao Yang
35
0
0
12 Oct 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled
  Compositional Optimization
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
27
16
0
18 Jul 2022
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and
  Applications
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications
Bokun Wang
Tianbao Yang
31
31
0
24 Feb 2022
Online Estimation and Optimization of Utility-Based Shortfall Risk
Online Estimation and Optimization of Utility-Based Shortfall Risk
Vishwajit Hegde
Arvind S. Menon
L. A. Prashanth
Krishna Jagannathan
19
2
0
16 Nov 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
29
35
0
24 Sep 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
51
2
0
07 Jul 2021
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Guanghui Wang
Minghao Yang
Lijun Zhang
Tianbao Yang
34
22
0
02 Jul 2021
Solving Stochastic Compositional Optimization is Nearly as Easy as
  Solving Stochastic Optimization
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
44
81
0
25 Aug 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
281
11,681
0
09 Mar 2017
(Bandit) Convex Optimization with Biased Noisy Gradient Oracles
(Bandit) Convex Optimization with Biased Noisy Gradient Oracles
Xiaowei Hu
A. PrashanthL.
András Gyorgy
Csaba Szepesvári
76
65
0
22 Sep 2016
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
1