ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11537
  4. Cited By
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA

26 February 2020
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
    CML
ArXivPDFHTML

Papers citing "ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA"

24 / 24 papers shown
Title
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
83
0
0
17 Apr 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
70
3
0
16 Feb 2025
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
74
3
0
30 Oct 2024
Few-shot Domain Adaptation by Causal Mechanism Transfer
Few-shot Domain Adaptation by Causal Mechanism Transfer
Takeshi Teshima
Issei Sato
Masashi Sugiyama
OOD
CML
TTA
40
86
0
10 Feb 2020
Disentanglement by Nonlinear ICA with General Incompressible-flow
  Networks (GIN)
Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)
Peter Sorrenson
Carsten Rother
Ullrich Kothe
DRL
CML
20
119
0
14 Jan 2020
Flow Contrastive Estimation of Energy-Based Models
Flow Contrastive Estimation of Energy-Based Models
Ruiqi Gao
Erik Nijkamp
Diederik P. Kingma
Zhen Xu
Andrew M. Dai
Ying Nian Wu
GAN
31
113
0
02 Dec 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
121
3,803
0
12 Jul 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
39
578
0
10 Jul 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
75
761
0
10 Jun 2019
Causal Discovery with General Non-Linear Relationships Using Non-Linear
  ICA
Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA
R. Monti
Kun Zhang
Aapo Hyvarinen
CML
29
91
0
19 Apr 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
80
1,451
0
29 Nov 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
175
3,110
0
09 Jul 2018
Conditional Noise-Contrastive Estimation of Unnormalised Models
Conditional Noise-Contrastive Estimation of Unnormalised Models
Ciwan Ceylan
Michael U. Gutmann
33
42
0
10 Jun 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
48
94
0
29 May 2018
A Unified Probabilistic Model for Learning Latent Factors and Their
  Connectivities from High-Dimensional Data
A Unified Probabilistic Model for Learning Latent Factors and Their Connectivities from High-Dimensional Data
R. Monti
Aapo Hyvarinen
16
18
0
24 May 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OOD
CML
64
318
0
22 May 2018
Deep Energy Estimator Networks
Deep Energy Estimator Networks
Saeed Saremi
Arash Mehrjou
Bernhard Schölkopf
Aapo Hyvarinen
34
73
0
21 May 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGe
DRL
32
828
0
10 Apr 2018
Structured Disentangled Representations
Structured Disentangled Representations
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
OOD
CML
BDL
DRL
52
165
0
06 Apr 2018
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic
  Segmentation
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
Guosheng Lin
Anton Milan
Chunhua Shen
Ian Reid
AI4TS
SSeg
205
2,835
0
20 Nov 2016
Unsupervised Feature Extraction by Time-Contrastive Learning and
  Nonlinear ICA
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA
Aapo Hyvarinen
H. Morioka
CML
OOD
AI4TS
24
404
0
20 May 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
216
4,143
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
385
149,474
0
22 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
310
16,972
0
20 Dec 2013
1