ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11569
  4. Cited By
Overfitting in adversarially robust deep learning

Overfitting in adversarially robust deep learning

26 February 2020
Leslie Rice
Eric Wong
Zico Kolter
ArXivPDFHTML

Papers citing "Overfitting in adversarially robust deep learning"

50 / 166 papers shown
Title
Self-Ensemble Adversarial Training for Improved Robustness
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
11
48
0
18 Mar 2022
Leveraging Adversarial Examples to Quantify Membership Information
  Leakage
Leveraging Adversarial Examples to Quantify Membership Information Leakage
Ganesh Del Grosso
Hamid Jalalzai
Georg Pichler
C. Palamidessi
Pablo Piantanida
MIACV
29
21
0
17 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
47
131
0
13 Mar 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
23
47
0
11 Mar 2022
Towards Efficient Data-Centric Robust Machine Learning with Noise-based
  Augmentation
Towards Efficient Data-Centric Robust Machine Learning with Noise-based Augmentation
Xiaogeng Liu
Haoyu Wang
Yechao Zhang
Fangzhou Wu
Shengshan Hu
OOD
25
11
0
08 Mar 2022
Why adversarial training can hurt robust accuracy
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for
  Adversarial Training
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min-Bin Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
19
119
0
21 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
77
46
0
20 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability
  Analysis (LSA) framework
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
17
3
0
05 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
19
4
0
03 Feb 2022
Boundary Defense Against Black-box Adversarial Attacks
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
17
6
0
31 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
31
10
0
31 Dec 2021
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial
  Robustness?
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness?
Xinhsuai Dong
Anh Tuan Luu
Min-Bin Lin
Shuicheng Yan
Hanwang Zhang
SILM
AAML
20
55
0
22 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in
  Adversarial Training
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
15
13
0
14 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and
  Generalizable Defenses
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial
  Robustness
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
AAML
60
11
0
05 Dec 2021
Improving the Robustness of Reinforcement Learning Policies with
  $\mathcal{L}_{1}$ Adaptive Control
Improving the Robustness of Reinforcement Learning Policies with L1\mathcal{L}_{1}L1​ Adaptive Control
Y. Cheng
Penghui Zhao
F. Wang
D. Block
N. Hovakimyan
42
8
0
03 Dec 2021
Subspace Adversarial Training
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
36
56
0
24 Nov 2021
Data Augmentation Can Improve Robustness
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
269
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based
  Adversarial Attacks
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Generalized Depthwise-Separable Convolutions for Adversarially Robust
  and Efficient Neural Networks
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks
Hassan Dbouk
Naresh R Shanbhag
AAML
19
7
0
28 Oct 2021
Improving Robustness using Generated Data
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
22
293
0
18 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust
  Overfitting
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
Adversarial Bone Length Attack on Action Recognition
Adversarial Bone Length Attack on Action Recognition
Nariki Tanaka
Hiroshi Kera
K. Kawamoto
AAML
27
13
0
13 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
11
6
0
02 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep
  Neural Networks
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
20
2
0
26 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided
  Knowledge Distillation and Bi-directional Metric Learning
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
19
15
0
13 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
31
14
0
05 Aug 2021
Imbalanced Adversarial Training with Reweighting
Imbalanced Adversarial Training with Reweighting
Wentao Wang
Han Xu
Xiaorui Liu
Yaxin Li
B. Thuraisingham
Jiliang Tang
29
16
0
28 Jul 2021
On the Importance of Regularisation & Auxiliary Information in OOD
  Detection
On the Importance of Regularisation & Auxiliary Information in OOD Detection
John Mitros
Brian Mac Namee
21
2
0
15 Jul 2021
Adversarial Robustness via Fisher-Rao Regularization
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
20
23
0
12 Jun 2021
Exploring Misclassifications of Robust Neural Networks to Enhance
  Adversarial Attacks
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial
  Attacks
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
23
26
0
18 May 2021
Brain Multigraph Prediction using Topology-Aware Adversarial Graph
  Neural Network
Brain Multigraph Prediction using Topology-Aware Adversarial Graph Neural Network
Alaa Bessadok
Mohamed Ali Mahjoub
I. Rekik
MedIm
AI4CE
6
16
0
06 May 2021
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard
Pierre-Alain Moëllic
Martial Mermillod
Yannick Bourrier
Romain Cohendet
M. Solinas
M. Reyboz
AAML
19
16
0
26 Apr 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
25
44
0
19 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
27
65
0
09 Apr 2021
Adversarial Robustness under Long-Tailed Distribution
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
18
76
0
06 Apr 2021
Adversarially Optimized Mixup for Robust Classification
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
24
8
0
22 Mar 2021
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
S. Hwang
Jinwoo Shin
AAML
31
57
0
08 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
23
1
0
04 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
27
268
0
02 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Guided Interpolation for Adversarial Training
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
19
10
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
15
29
0
13 Feb 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic
  Regression
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
8
9
0
05 Feb 2021
Previous
1234
Next