ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11569
  4. Cited By
Overfitting in adversarially robust deep learning

Overfitting in adversarially robust deep learning

26 February 2020
Leslie Rice
Eric Wong
Zico Kolter
ArXivPDFHTML

Papers citing "Overfitting in adversarially robust deep learning"

50 / 156 papers shown
Title
A Data-Centric Approach for Improving Adversarial Training Through the
  Lens of Out-of-Distribution Detection
A Data-Centric Approach for Improving Adversarial Training Through the Lens of Out-of-Distribution Detection
Mohammad Azizmalayeri
Arman Zarei
Alireza Isavand
M. T. Manzuri
M. Rohban
OODD
35
0
0
25 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
Strong inductive biases provably prevent harmless interpolation
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
30
9
0
18 Jan 2023
Explainability and Robustness of Deep Visual Classification Models
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
36
2
0
03 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
34
59
0
14 Dec 2022
Robust Perception through Equivariance
Robust Perception through Equivariance
Chengzhi Mao
Lingyu Zhang
Abhishek Joshi
Junfeng Yang
Hongya Wang
Carl Vondrick
BDL
AAML
26
7
0
12 Dec 2022
Improving Robust Generalization by Direct PAC-Bayesian Bound
  Minimization
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
35
5
0
22 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A
  Survey
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
An Adversarial Robustness Perspective on the Topology of Neural Networks
An Adversarial Robustness Perspective on the Topology of Neural Networks
Morgane Goibert
Thomas Ricatte
Elvis Dohmatob
AAML
11
2
0
04 Nov 2022
ARDIR: Improving Robustness using Knowledge Distillation of Internal
  Representation
ARDIR: Improving Robustness using Knowledge Distillation of Internal Representation
Tomokatsu Takahashi
Masanori Yamada
Yuuki Yamanaka
Tomoya Yamashita
20
0
0
01 Nov 2022
Scoring Black-Box Models for Adversarial Robustness
Scoring Black-Box Models for Adversarial Robustness
Jian Vora
Pranay Reddy Samala
25
0
0
31 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
24
4
0
20 Oct 2022
Scaling Adversarial Training to Large Perturbation Bounds
Scaling Adversarial Training to Large Perturbation Bounds
Sravanti Addepalli
Samyak Jain
Gaurang Sriramanan
R. Venkatesh Babu
AAML
25
22
0
18 Oct 2022
When Adversarial Training Meets Vision Transformers: Recipes from
  Training to Architecture
When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture
Yi Mo
Dongxian Wu
Yifei Wang
Yiwen Guo
Yisen Wang
ViT
37
52
0
14 Oct 2022
Robust Models are less Over-Confident
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
24
0
12 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin
  Regularization
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
25
5
0
11 Oct 2022
Towards Out-of-Distribution Adversarial Robustness
Towards Out-of-Distribution Adversarial Robustness
Adam Ibrahim
Charles Guille-Escuret
Ioannis Mitliagkas
Irina Rish
David M. Krueger
P. Bashivan
OOD
29
6
0
06 Oct 2022
Strength-Adaptive Adversarial Training
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Mingming Gong
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
24
30
0
03 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial
  Training
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
22
2
0
27 Sep 2022
Deep Double Descent via Smooth Interpolation
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
56
10
0
21 Sep 2022
A Light Recipe to Train Robust Vision Transformers
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
26
68
0
15 Sep 2022
Saliency Guided Adversarial Training for Learning Generalizable Features
  with Applications to Medical Imaging Classification System
Saliency Guided Adversarial Training for Learning Generalizable Features with Applications to Medical Imaging Classification System
Xin Li
Yao Qiang
Chengyin Li
Sijia Liu
D. Zhu
OOD
MedIm
29
4
0
09 Sep 2022
Bag of Tricks for FGSM Adversarial Training
Bag of Tricks for FGSM Adversarial Training
Zichao Li
Li Liu
Zeyu Wang
Yuyin Zhou
Cihang Xie
AAML
23
6
0
06 Sep 2022
Neuro-Symbolic Learning: Principles and Applications in Ophthalmology
Neuro-Symbolic Learning: Principles and Applications in Ophthalmology
Muhammad Hassan
Haifei Guan
Aikaterini Melliou
Yuqi Wang
Qianhui Sun
...
Qi Huang
Jiefu Tan
Qinwang Xing
Peiwu Qin
Dongmei Yu
NAI
34
14
0
31 Jul 2022
Membership Inference Attacks via Adversarial Examples
Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai
Elie Kadoche
Rémi Leluc
Vincent Plassier
AAML
FedML
MIACV
27
7
0
27 Jul 2022
Towards Efficient Adversarial Training on Vision Transformers
Towards Efficient Adversarial Training on Vision Transformers
Boxi Wu
Jindong Gu
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
ViT
AAML
35
37
0
21 Jul 2022
Holistic Robust Data-Driven Decisions
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
31
21
0
19 Jul 2022
How many perturbations break this model? Evaluating robustness beyond
  adversarial accuracy
How many perturbations break this model? Evaluating robustness beyond adversarial accuracy
R. Olivier
Bhiksha Raj
AAML
29
5
0
08 Jul 2022
On the Role of Generalization in Transferability of Adversarial Examples
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
Landscape Learning for Neural Network Inversion
Landscape Learning for Neural Network Inversion
Ruoshi Liu
Chen-Guang Mao
Purva Tendulkar
Hongya Wang
Carl Vondrick
32
8
0
17 Jun 2022
Analysis and Extensions of Adversarial Training for Video Classification
Analysis and Extensions of Adversarial Training for Video Classification
K. A. Kinfu
René Vidal
AAML
25
13
0
16 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at
  Scale
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
22
12
0
13 Jun 2022
Towards Understanding Sharpness-Aware Minimization
Towards Understanding Sharpness-Aware Minimization
Maksym Andriushchenko
Nicolas Flammarion
AAML
24
133
0
13 Jun 2022
Building Robust Ensembles via Margin Boosting
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
35
15
0
07 Jun 2022
Semi-supervised Semantics-guided Adversarial Training for Trajectory
  Prediction
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao
Xiangguo Liu
Takami Sato
Qi Alfred Chen
Qi Zhu
AAML
28
20
0
27 May 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of
  Expressive Power
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
74
27
0
27 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
24
0
0
04 May 2022
Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
  Learning
Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning
Mathias Lechner
Alexander Amini
Daniela Rus
T. Henzinger
AAML
23
9
0
15 Apr 2022
Adversarial Robustness through the Lens of Convolutional Filters
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
30
15
0
05 Apr 2022
Concept Evolution in Deep Learning Training: A Unified Interpretation
  Framework and Discoveries
Concept Evolution in Deep Learning Training: A Unified Interpretation Framework and Discoveries
Haekyu Park
Seongmin Lee
Benjamin Hoover
Austin P. Wright
Omar Shaikh
Rahul Duggal
Nilaksh Das
Kevin Li
Judy Hoffman
Duen Horng Chau
19
2
0
30 Mar 2022
A Survey of Robust Adversarial Training in Pattern Recognition:
  Fundamental, Theory, and Methodologies
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
71
0
26 Mar 2022
A Manifold View of Adversarial Risk
A Manifold View of Adversarial Risk
Wen-jun Zhang
Yikai Zhang
Xiaoling Hu
Mayank Goswami
Chao Chen
Dimitris N. Metaxas
AAML
9
6
0
24 Mar 2022
Self-Ensemble Adversarial Training for Improved Robustness
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
11
48
0
18 Mar 2022
Leveraging Adversarial Examples to Quantify Membership Information
  Leakage
Leveraging Adversarial Examples to Quantify Membership Information Leakage
Ganesh Del Grosso
Hamid Jalalzai
Georg Pichler
C. Palamidessi
Pablo Piantanida
MIACV
26
21
0
17 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
41
131
0
13 Mar 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
17
47
0
11 Mar 2022
Towards Efficient Data-Centric Robust Machine Learning with Noise-based
  Augmentation
Towards Efficient Data-Centric Robust Machine Learning with Noise-based Augmentation
Xiaogeng Liu
Haoyu Wang
Yechao Zhang
Fangzhou Wu
Shengshan Hu
OOD
25
11
0
08 Mar 2022
Previous
1234
Next