ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01285
  4. Cited By
Towards Noise-resistant Object Detection with Noisy Annotations

Towards Noise-resistant Object Detection with Noisy Annotations

3 March 2020
Junnan Li
Caiming Xiong
R. Socher
S. Hoi
    ObjD
    NoLa
ArXivPDFHTML

Papers citing "Towards Noise-resistant Object Detection with Noisy Annotations"

4 / 4 papers shown
Title
Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations
Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations
David Tschirschwitz
Volker Rodehorst
16
1
0
14 Sep 2024
DISCO: Distribution-Aware Calibration for Object Detection with Noisy
  Bounding Boxes
DISCO: Distribution-Aware Calibration for Object Detection with Noisy Bounding Boxes
Donghao Zhou
Jialin Li
Jinpeng Li
Jiancheng Huang
Qiang Nie
Y. Liu
Bin-Bin Gao
Qiong Wang
Pheng-Ann Heng
Guangyong Chen
10
3
0
23 Aug 2023
Robust Object Detection With Inaccurate Bounding Boxes
Robust Object Detection With Inaccurate Bounding Boxes
Chengxin Liu
Kewei Wang
Hao Lu
Zhiguo Cao
Ziming Zhang
6
21
0
20 Jul 2022
Mean teachers are better role models: Weight-averaged consistency
  targets improve semi-supervised deep learning results
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
244
1,279
0
06 Mar 2017
1