ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01285
  4. Cited By
Towards Noise-resistant Object Detection with Noisy Annotations

Towards Noise-resistant Object Detection with Noisy Annotations

3 March 2020
Junnan Li
Caiming Xiong
R. Socher
S. Hoi
    ObjD
    NoLa
ArXivPDFHTML

Papers citing "Towards Noise-resistant Object Detection with Noisy Annotations"

20 / 20 papers shown
Title
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
C. Kim
Sangwoo Moon
Jihwan Moon
Dongyeon Woo
Gunhee Kim
NoLa
52
0
0
25 Feb 2025
NBBOX: Noisy Bounding Box Improves Remote Sensing Object Detection
NBBOX: Noisy Bounding Box Improves Remote Sensing Object Detection
Yechan Kim
SooYeon Kim
Moongu Jeon
ViT
40
1
0
08 Jan 2025
Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations
Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations
David Tschirschwitz
Volker Rodehorst
16
1
0
14 Sep 2024
Dynamic Loss Decay based Robust Oriented Object Detection on Remote
  Sensing Images with Noisy Labels
Dynamic Loss Decay based Robust Oriented Object Detection on Remote Sensing Images with Noisy Labels
Guozhang Liu
Ting Liu
Mengke Yuan
Tao Pang
Guangxing Yang
Hao Fu
Tao Wang
Tongkui Liao
NoLa
27
1
0
15 May 2024
Robust Tiny Object Detection in Aerial Images amidst Label Noise
Robust Tiny Object Detection in Aerial Images amidst Label Noise
Haoran Zhu
Chang Xu
Wen Yang
Ruixiang Zhang
Yan Zhang
Gui-Song Xia
NoLa
20
1
0
16 Jan 2024
Universal Noise Annotation: Unveiling the Impact of Noisy annotation on
  Object Detection
Universal Noise Annotation: Unveiling the Impact of Noisy annotation on Object Detection
Kwang-seok Ryoo
Yeonsik Jo
Seungjun Lee
Mira Kim
Ahra Jo
S. Kim
Seungryong Kim
Soonyoung Lee
NoLa
18
1
0
21 Dec 2023
DISCO: Distribution-Aware Calibration for Object Detection with Noisy
  Bounding Boxes
DISCO: Distribution-Aware Calibration for Object Detection with Noisy Bounding Boxes
Donghao Zhou
Jialin Li
Jinpeng Li
Jiancheng Huang
Qiang Nie
Y. Liu
Bin-Bin Gao
Qiong Wang
Pheng-Ann Heng
Guangyong Chen
10
3
0
23 Aug 2023
Spatial Self-Distillation for Object Detection with Inaccurate Bounding
  Boxes
Spatial Self-Distillation for Object Detection with Inaccurate Bounding Boxes
Di Wu
Pengfei Chen
Xuehui Yu
Guorong Li
Zhenjun Han
Jianbin Jiao
27
8
0
22 Jul 2023
Combating noisy labels in object detection datasets
Combating noisy labels in object detection datasets
K. Chachula
Jakub Lyskawa
Bartlomiej Olber
Piotr Fratczak
A. Popowicz
Krystian Radlak
NoLa
8
4
0
25 Nov 2022
Robust Object Detection in Remote Sensing Imagery with Noisy and Sparse
  Geo-Annotations (Full Version)
Robust Object Detection in Remote Sensing Imagery with Noisy and Sparse Geo-Annotations (Full Version)
Maximilian Bernhard
Matthias Schubert
ObjD
8
3
0
24 Oct 2022
Soft-labeling Strategies for Rapid Sub-Typing
Soft-labeling Strategies for Rapid Sub-Typing
Grant Rosario
David A. Noever
Matt Ciolino
35
1
0
23 Sep 2022
Robust Object Detection With Inaccurate Bounding Boxes
Robust Object Detection With Inaccurate Bounding Boxes
Chengxin Liu
Kewei Wang
Hao Lu
Zhiguo Cao
Ziming Zhang
6
21
0
20 Jul 2022
Towards Robust Adaptive Object Detection under Noisy Annotations
Towards Robust Adaptive Object Detection under Noisy Annotations
Xinyu Liu
Wuyang Li
Qiushi Yang
Baopu Li
Yixuan Yuan
11
29
0
06 Apr 2022
SparseDet: Improving Sparsely Annotated Object Detection with
  Pseudo-positive Mining
SparseDet: Improving Sparsely Annotated Object Detection with Pseudo-positive Mining
Saksham Suri
Sai Saketh Rambhatla
Rama Chellappa
Abhinav Shrivastava
ObjD
14
11
0
12 Jan 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding
  Box Regression
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression
Jiabo He
S. Erfani
Xingjun Ma
James Bailey
Ying Chi
Xiansheng Hua
26
243
0
26 Oct 2021
Noisy Annotation Refinement for Object Detection
Noisy Annotation Refinement for Object Detection
Jiafeng Mao
Qing Yu
Yoko Yamakata
Kiyoharu Aizawa
NoLa
20
10
0
20 Oct 2021
Multi-Label Gold Asymmetric Loss Correction with Single-Label Regulators
Multi-Label Gold Asymmetric Loss Correction with Single-Label Regulators
Cosmin Octavian Pene
Amirmasoud Ghiassi
Taraneh Younesian
Robert Birke
Lydia Y. Chen
26
3
0
04 Aug 2021
Sum of Ranked Range Loss for Supervised Learning
Sum of Ranked Range Loss for Supervised Learning
Shu Hu
Yiming Ying
Xin Wang
Siwei Lyu
8
23
0
07 Jun 2021
Evaluating Multi-label Classifiers with Noisy Labels
Evaluating Multi-label Classifiers with Noisy Labels
Wenting Zhao
Carla P. Gomes
NoLa
63
14
0
16 Feb 2021
Mean teachers are better role models: Weight-averaged consistency
  targets improve semi-supervised deep learning results
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
244
1,279
0
06 Mar 2017
1