Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01690
Cited By
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
3 March 2020
Francesco Croce
Matthias Hein
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks"
50 / 354 papers shown
Title
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
39
59
0
14 Dec 2022
SAIF: Sparse Adversarial and Imperceptible Attack Framework
Tooba Imtiaz
Morgan Kohler
Jared Miller
Zifeng Wang
M. Sznaier
Octavia Camps
Octavia Camps
Jennifer Dy
AAML
21
0
0
14 Dec 2022
Adversarially Robust Video Perception by Seeing Motion
Lingyu Zhang
Chengzhi Mao
Junfeng Yang
Carl Vondrick
VGen
AAML
42
2
0
13 Dec 2022
Robust Perception through Equivariance
Chengzhi Mao
Lingyu Zhang
Abhishek Joshi
Junfeng Yang
Hongya Wang
Carl Vondrick
BDL
AAML
29
7
0
12 Dec 2022
General Adversarial Defense Against Black-box Attacks via Pixel Level and Feature Level Distribution Alignments
Xiaogang Xu
Hengshuang Zhao
Philip H. S. Torr
Jiaya Jia
AAML
26
2
0
11 Dec 2022
Re-purposing Perceptual Hashing based Client Side Scanning for Physical Surveillance
Ashish Hooda
Andrey Labunets
Tadayoshi Kohno
Earlence Fernandes
11
2
0
08 Dec 2022
Efficient Adversarial Input Generation via Neural Net Patching
Tooba Khan
Kumar Madhukar
Subodh Vishnu Sharma
AAML
11
0
0
30 Nov 2022
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Xiaoyue Duan
Guoliang Kang
Runqi Wang
Shumin Han
Shenjun Xue
Tian Wang
Baochang Zhang
29
2
0
28 Nov 2022
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning
Ethan Rathbun
Kaleel Mahmood
Sohaib Ahmad
Caiwen Ding
Marten van Dijk
AAML
19
4
0
26 Nov 2022
Supervised Contrastive Prototype Learning: Augmentation Free Robust Neural Network
Iordanis Fostiropoulos
Laurent Itti
26
1
0
26 Nov 2022
Benchmarking Adversarially Robust Quantum Machine Learning at Scale
Maxwell T. West
S. Erfani
C. Leckie
M. Sevior
Lloyd C. L. Hollenberg
Muhammad Usman
AAML
OOD
22
33
0
23 Nov 2022
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
35
5
0
22 Nov 2022
Towards Robust Dataset Learning
Yihan Wu
Xinda Li
Florian Kerschbaum
Heng Huang
Hongyang R. Zhang
DD
OOD
41
10
0
19 Nov 2022
Accelerating Adversarial Perturbation by 50% with Semi-backward Propagation
Zhiqi Bu
AAML
25
0
0
09 Nov 2022
Are AlphaZero-like Agents Robust to Adversarial Perturbations?
Li-Cheng Lan
Huan Zhang
Ti-Rong Wu
Meng-Yu Tsai
I-Chen Wu
Cho-Jui Hsieh
AAML
19
10
0
07 Nov 2022
Data-free Defense of Black Box Models Against Adversarial Attacks
Gaurav Kumar Nayak
Inder Khatri
Ruchit Rawal
Anirban Chakraborty
AAML
25
1
0
03 Nov 2022
ARDIR: Improving Robustness using Knowledge Distillation of Internal Representation
Tomokatsu Takahashi
Masanori Yamada
Yuuki Yamanaka
Tomoya Yamashita
20
0
0
01 Nov 2022
Improving Adversarial Robustness with Self-Paced Hard-Class Pair Reweighting
Peng-Fei Hou
Jie Han
Xingyu Li
AAML
OOD
21
11
0
26 Oct 2022
Causal Information Bottleneck Boosts Adversarial Robustness of Deep Neural Network
Hua Hua
Jun Yan
Xi Fang
Weiquan Huang
Huilin Yin
Wancheng Ge
AAML
25
1
0
25 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
28
4
0
20 Oct 2022
On the Adversarial Robustness of Mixture of Experts
J. Puigcerver
Rodolphe Jenatton
C. Riquelme
Pranjal Awasthi
Srinadh Bhojanapalli
OOD
AAML
MoE
37
18
0
19 Oct 2022
Scaling Adversarial Training to Large Perturbation Bounds
Sravanti Addepalli
Samyak Jain
Gaurang Sriramanan
R. Venkatesh Babu
AAML
30
22
0
18 Oct 2022
DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers
Gaurav Kumar Nayak
Ruchit Rawal
Anirban Chakraborty
11
3
0
17 Oct 2022
When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture
Yi Mo
Dongxian Wu
Yifei Wang
Yiwen Guo
Yisen Wang
ViT
39
52
0
14 Oct 2022
Token-Label Alignment for Vision Transformers
Han Xiao
Wenzhao Zheng
Zhengbiao Zhu
Jie Zhou
Jiwen Lu
21
4
0
12 Oct 2022
Visual Prompting for Adversarial Robustness
Aochuan Chen
P. Lorenz
Yuguang Yao
Pin-Yu Chen
Sijia Liu
VLM
VPVLM
27
32
0
12 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
30
24
0
12 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
25
5
0
11 Oct 2022
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
31
45
0
10 Oct 2022
A2: Efficient Automated Attacker for Boosting Adversarial Training
Zhuoer Xu
Guanghui Zhu
Changhua Meng
Shiwen Cui
ZhenZhe Ying
Weiqiang Wang
GU Ming
Yihua Huang
AAML
36
13
0
07 Oct 2022
Game-Theoretic Understanding of Misclassification
Kosuke Sumiyasu
K. Kawamoto
Hiroshi Kera
37
1
0
07 Oct 2022
Towards Out-of-Distribution Adversarial Robustness
Adam Ibrahim
Charles Guille-Escuret
Ioannis Mitliagkas
Irina Rish
David M. Krueger
P. Bashivan
OOD
31
6
0
06 Oct 2022
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Mingming Gong
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset Copyright Protection
Yiming Li
Yang Bai
Yong Jiang
Yong-Liang Yang
Shutao Xia
Bo Li
AAML
47
97
0
27 Sep 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
29
2
0
27 Sep 2022
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
29
68
0
15 Sep 2022
Improving Robust Fairness via Balance Adversarial Training
Chunyu Sun
Chenye Xu
Chengyuan Yao
Siyuan Liang
Yichao Wu
Ding Liang
XiangLong Liu
Aishan Liu
23
11
0
15 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
On the interplay of adversarial robustness and architecture components: patches, convolution and attention
Francesco Croce
Matthias Hein
41
6
0
14 Sep 2022
Attacking the Spike: On the Transferability and Security of Spiking Neural Networks to Adversarial Examples
Nuo Xu
Kaleel Mahmood
Haowen Fang
Ethan Rathbun
Caiwen Ding
Wujie Wen
AAML
29
12
0
07 Sep 2022
On the Transferability of Adversarial Examples between Encrypted Models
Miki Tanaka
Isao Echizen
Hitoshi Kiya
SILM
26
4
0
07 Sep 2022
Bag of Tricks for FGSM Adversarial Training
Zichao Li
Li Liu
Zeyu Wang
Yuyin Zhou
Cihang Xie
AAML
23
6
0
06 Sep 2022
Adversarial Detection: Attacking Object Detection in Real Time
Han-Ching Wu
Syed Yunas
Sareh Rowlands
Wenjie Ruan
Johan Wahlstrom
AAML
25
4
0
05 Sep 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
27
0
0
17 Aug 2022
Self-Ensembling Vision Transformer (SEViT) for Robust Medical Image Classification
Faris Almalik
Mohammad Yaqub
Karthik Nandakumar
ViT
AAML
MedIm
24
33
0
04 Aug 2022
Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai
Elie Kadoche
Rémi Leluc
Vincent Plassier
AAML
FedML
MIACV
38
7
0
27 Jul 2022
Improving Adversarial Robustness via Mutual Information Estimation
Dawei Zhou
Nannan Wang
Xinbo Gao
Bo Han
Xiaoyu Wang
Yibing Zhan
Tongliang Liu
AAML
16
15
0
25 Jul 2022
Jigsaw-ViT: Learning Jigsaw Puzzles in Vision Transformer
Yingyi Chen
Xiaoke Shen
Yahui Liu
Qinghua Tao
Johan A. K. Suykens
AAML
ViT
26
22
0
25 Jul 2022
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
Previous
1
2
3
4
5
6
7
8
Next