Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01690
Cited By
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
3 March 2020
Francesco Croce
Matthias Hein
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks"
50 / 353 papers shown
Title
White-Box Attacks on Hate-speech BERT Classifiers in German with Explicit and Implicit Character Level Defense
Shahrukh Khan
Mahnoor Shahid
Navdeeppal Singh
AAML
23
2
0
11 Feb 2022
D4: Detection of Adversarial Diffusion Deepfakes Using Disjoint Ensembles
Ashish Hooda
Neal Mangaokar
Ryan Feng
Kassem Fawaz
S. Jha
Atul Prakash
24
11
0
11 Feb 2022
Deadwooding: Robust Global Pruning for Deep Neural Networks
Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
19
4
0
10 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
17
3
0
05 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
19
4
0
03 Feb 2022
Few-Shot Backdoor Attacks on Visual Object Tracking
Yiming Li
Haoxiang Zhong
Xingjun Ma
Yong Jiang
Shutao Xia
AAML
38
53
0
31 Jan 2022
MEGA: Model Stealing via Collaborative Generator-Substitute Networks
Chi Hong
Jiyue Huang
L. Chen
19
2
0
31 Jan 2022
Scale-Invariant Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Mengting Xu
Tao Zhang
Zhongnian Li
Daoqiang Zhang
AAML
30
1
0
29 Jan 2022
On Adversarial Robustness of Trajectory Prediction for Autonomous Vehicles
Qingzhao Zhang
Shengtuo Hu
Jiachen Sun
Qi Alfred Chen
Z. Morley Mao
AAML
35
133
0
13 Jan 2022
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
29
5
0
28 Dec 2021
Learning Robust and Lightweight Model through Separable Structured Transformations
Xian Wei
Yanhui Huang
Yang Xu
Mingsong Chen
Hai Lan
Yuanxiang Li
Zhongfeng Wang
Xuan Tang
OOD
24
0
0
27 Dec 2021
Understanding and Measuring Robustness of Multimodal Learning
Nishant Vishwamitra
Hongxin Hu
Ziming Zhao
Long Cheng
Feng Luo
AAML
19
5
0
22 Dec 2021
A Theoretical View of Linear Backpropagation and Its Convergence
Ziang Li
Yiwen Guo
Haodi Liu
Changshui Zhang
AAML
16
3
0
21 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
15
13
0
14 Dec 2021
Triangle Attack: A Query-efficient Decision-based Adversarial Attack
Xiaosen Wang
Zeliang Zhang
Kangheng Tong
Dihong Gong
Kun He
Zhifeng Li
Wei Liu
AAML
24
56
0
13 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
The Fundamental Limits of Interval Arithmetic for Neural Networks
M. Mirman
Maximilian Baader
Martin Vechev
24
6
0
09 Dec 2021
Understanding Square Loss in Training Overparametrized Neural Network Classifiers
Tianyang Hu
Jun Wang
Wenjia Wang
Zhenguo Li
UQCV
AAML
35
19
0
07 Dec 2021
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
AAML
60
11
0
05 Dec 2021
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?
P. Lorenz
Dominik Strassel
M. Keuper
J. Keuper
AAML
19
10
0
02 Dec 2021
Push Stricter to Decide Better: A Class-Conditional Feature Adaptive Framework for Improving Adversarial Robustness
Jia-Li Yin
Lehui Xie
Wanqing Zhu
Ximeng Liu
Bo-Hao Chen
TTA
AAML
19
3
0
01 Dec 2021
FROB: Few-shot ROBust Model for Classification and Out-of-Distribution Detection
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
13
4
0
30 Nov 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
38
56
0
24 Nov 2021
Medical Aegis: Robust adversarial protectors for medical images
Qingsong Yao
Zecheng He
S. Kevin Zhou
AAML
MedIm
19
2
0
22 Nov 2021
Detecting AutoAttack Perturbations in the Frequency Domain
P. Lorenz
P. Harder
Dominik Strassel
M. Keuper
J. Keuper
AAML
11
13
0
16 Nov 2021
Robust and Accurate Object Detection via Self-Knowledge Distillation
Weipeng Xu
Pengzhi Chu
Renhao Xie
Xiongziyan Xiao
Hongcheng Huang
AAML
ObjD
24
4
0
14 Nov 2021
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
192
257
0
10 Nov 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
269
0
09 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
32
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Adversarial Robustness in Multi-Task Learning: Promises and Illusions
Salah Ghamizi
Maxime Cordy
Mike Papadakis
Yves Le Traon
OOD
AAML
25
18
0
26 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
30
293
0
18 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
Introducing the DOME Activation Functions
Mohamed E. Hussein
Wael AbdAlmageed
27
1
0
30 Sep 2021
Modeling Adversarial Noise for Adversarial Training
Dawei Zhou
Nannan Wang
Bo Han
Tongliang Liu
AAML
30
15
0
21 Sep 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
32
4
0
16 Sep 2021
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Yonggan Fu
Yang Katie Zhao
Qixuan Yu
Chaojian Li
Yingyan Lin
AAML
44
12
0
11 Sep 2021
Training Meta-Surrogate Model for Transferable Adversarial Attack
Yunxiao Qin
Yuanhao Xiong
Jinfeng Yi
Cho-Jui Hsieh
AAML
15
18
0
05 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
25
2
0
26 Aug 2021
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier
Chong Xiang
Saeed Mahloujifar
Prateek Mittal
VLM
AAML
24
73
0
20 Aug 2021
Towards Understanding the Generative Capability of Adversarially Robust Classifiers
Yao Zhu
Jiacheng Ma
Jiacheng Sun
Zewei Chen
Rongxin Jiang
Zhenguo Li
AAML
15
21
0
20 Aug 2021
Neural Architecture Dilation for Adversarial Robustness
Yanxi Li
Zhaohui Yang
Yunhe Wang
Chang Xu
AAML
30
23
0
16 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
19
15
0
13 Aug 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
24
64
0
24 Jul 2021
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
Duhun Hwang
Eunjung Lee
Wonjong Rhee
AAML
167
14
0
14 Jul 2021
Towards Robust General Medical Image Segmentation
Laura Alexandra Daza
Juan C. Pérez
Pablo Arbelaez
OOD
23
25
0
09 Jul 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
16
4
0
06 Jul 2021
Previous
1
2
3
4
5
6
7
8
Next