ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03773
  4. Cited By
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
  Adaptive Semantic Segmentation

Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation

8 March 2020
Zhedong Zheng
Yi Yang
    NoLa
ArXivPDFHTML

Papers citing "Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation"

4 / 4 papers shown
Title
All for One, and One for All: UrbanSyn Dataset, the third Musketeer of Synthetic Driving Scenes
All for One, and One for All: UrbanSyn Dataset, the third Musketeer of Synthetic Driving Scenes
J. L. Gómez
Manuel Silva
Antonio Seoane
Agnes Borrás
Mario Noriega
Germán Ros
Jose A. Iglesias-Guitian
Antonio M. López
3DPC
34
12
0
19 Dec 2023
Confidence Regularized Self-Training
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
194
723
0
26 Aug 2019
Fully Convolutional Adaptation Networks for Semantic Segmentation
Fully Convolutional Adaptation Networks for Semantic Segmentation
Yiheng Zhang
Zhaofan Qiu
Ting Yao
Dong Liu
Tao Mei
SSeg
OOD
136
338
0
23 Apr 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
230
8,157
0
06 Jun 2015
1