ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03780
  4. Cited By
DADA: Differentiable Automatic Data Augmentation

DADA: Differentiable Automatic Data Augmentation

8 March 2020
Yonggang Li
Guosheng Hu
Yongtao Wang
Timothy M. Hospedales
N. Robertson
Yongxin Yang
ArXivPDFHTML

Papers citing "DADA: Differentiable Automatic Data Augmentation"

25 / 25 papers shown
Title
EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for
  Image Classification
EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification
Suorong Yang
Furao Shen
Jian Zhao
AAML
37
1
0
10 Sep 2024
Data Augmentation Policy Search for Long-Term Forecasting
Data Augmentation Policy Search for Long-Term Forecasting
Liran Nochumsohn
Omri Azencot
AI4TS
TPM
46
3
0
01 May 2024
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Haoyang Liu
Aditya Singh
Yijiang Li
Haohan Wang
AAML
ViT
39
1
0
15 Mar 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
70
5
0
13 Mar 2024
LA3: Efficient Label-Aware AutoAugment
LA3: Efficient Label-Aware AutoAugment
Mingjun Zhao
Sha Lu
Zixuan Wang
Xiaoli Wang
Di Niu
22
1
0
20 Apr 2023
Dynamic Test-Time Augmentation via Differentiable Functions
Dynamic Test-Time Augmentation via Differentiable Functions
Shohei Enomoto
Monikka Roslianna Busto
Takeharu Eda
OOD
43
5
0
09 Dec 2022
Empirical Evaluation of Data Augmentations for Biobehavioral Time Series
  Data with Deep Learning
Empirical Evaluation of Data Augmentations for Biobehavioral Time Series Data with Deep Learning
Huiyuan Yang
Han Yu
Akane Sano
AI4TS
24
5
0
13 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
26
39
0
14 Jun 2022
Masked Autoencoders are Robust Data Augmentors
Masked Autoencoders are Robust Data Augmentors
Haohang Xu
Shuangrui Ding
Xiaopeng Zhang
H. Xiong
35
27
0
10 Jun 2022
A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
  Challenges, and Opportunities
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Yisheng Song
Ting-Yuan Wang
S. Mondal
J. P. Sahoo
SLR
50
344
0
13 May 2022
Automated Progressive Learning for Efficient Training of Vision
  Transformers
Automated Progressive Learning for Efficient Training of Vision Transformers
Changlin Li
Bohan Zhuang
Guangrun Wang
Xiaodan Liang
Xiaojun Chang
Yi Yang
28
46
0
28 Mar 2022
AutoGPart: Intermediate Supervision Search for Generalizable 3D Part
  Segmentation
AutoGPart: Intermediate Supervision Search for Generalizable 3D Part Segmentation
Xueyi Liu
Xiaomeng Xu
Anyi Rao
Chuang Gan
L. Yi
3DPC
24
14
0
13 Mar 2022
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
Teppei Suzuki
ViT
21
48
0
25 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
27
8
0
04 Feb 2022
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
Learning Partial Equivariances from Data
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
21
27
0
19 Oct 2021
Text AutoAugment: Learning Compositional Augmentation Policy for Text
  Classification
Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification
Shuhuai Ren
Jinchao Zhang
Lei Li
Xu Sun
Jie Zhou
38
31
0
01 Sep 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
23
61
0
21 Jul 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation Search
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
30
33
0
09 Apr 2021
Automatic Data Augmentation for Generalization in Deep Reinforcement
  Learning
Automatic Data Augmentation for Generalization in Deep Reinforcement Learning
Roberta Raileanu
M. Goldstein
Denis Yarats
Ilya Kostrikov
Rob Fergus
OffRL
22
109
0
23 Jun 2020
Emergent Properties of Foveated Perceptual Systems
Emergent Properties of Foveated Perceptual Systems
Arturo Deza
Talia Konkle
21
45
0
14 Jun 2020
Meta Approach to Data Augmentation Optimization
Meta Approach to Data Augmentation Optimization
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
32
34
0
14 Jun 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
55
1,935
0
11 Apr 2020
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
X. Chu
20
1,420
0
02 Aug 2019
1