ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.05848
  4. Cited By
CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular
  Images With Self-Supervised Learning

CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular Images With Self-Supervised Learning

12 March 2020
Fabian Manhardt
Gu Wang
Benjamin Busam
M. Nickel
Sven Meier
Luca Minciullo
Xiangyang Ji
Nassir Navab
ArXivPDFHTML

Papers citing "CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular Images With Self-Supervised Learning"

3 / 3 papers shown
Title
Glissando-Net: Deep sinGLe vIew category level poSe eStimation ANd 3D recOnstruction
Bo Sun
Hao Kang
Li Guan
Haoxiang Li
Philippos Mordohai
Gang Hua
45
1
0
28 Jan 2025
Optimal and Robust Category-level Perception: Object Pose and Shape
  Estimation from 2D and 3D Semantic Keypoints
Optimal and Robust Category-level Perception: Object Pose and Shape Estimation from 2D and 3D Semantic Keypoints
J. Shi
Heng Yang
Luca Carlone
3DPC
3DV
19
12
0
24 Jun 2022
Optimal Pose and Shape Estimation for Category-level 3D Object
  Perception
Optimal Pose and Shape Estimation for Category-level 3D Object Perception
J. Shi
Heng Yang
Luca Carlone
24
26
0
16 Apr 2021
1