Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.09461
Cited By
Adversarial Robustness on In- and Out-Distribution Improves Explainability
20 March 2020
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Robustness on In- and Out-Distribution Improves Explainability"
23 / 23 papers shown
Title
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
Gaozheng Pei
Ke Ma
Yingfei Sun
Qianqian Xu
Q. Huang
DiffM
40
0
0
02 May 2025
HALO: Robust Out-of-Distribution Detection via Joint Optimisation
Hugo Lyons Keenan
S. Erfani
Christopher Leckie
OODD
204
0
0
27 Feb 2025
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
Ping Guo
Cheng Gong
Xi Victoria Lin
Fei Liu
Zhichao Lu
Qingfu Zhang
Zhenkun Wang
AAML
45
0
0
13 Jan 2025
Theoretical Understanding of Learning from Adversarial Perturbations
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
AAML
31
1
0
16 Feb 2024
Enhancing Adversarial Robustness via Score-Based Optimization
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
24
12
0
10 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
Function Composition in Trustworthy Machine Learning: Implementation Choices, Insights, and Questions
Manish Nagireddy
Moninder Singh
Samuel C. Hoffman
Evaline Ju
K. Ramamurthy
Kush R. Varshney
22
1
0
17 Feb 2023
Diffusion Visual Counterfactual Explanations
Maximilian Augustin
Valentyn Boreiko
Francesco Croce
Matthias Hein
DiffM
BDL
32
68
0
21 Oct 2022
How many perturbations break this model? Evaluating robustness beyond adversarial accuracy
R. Olivier
Bhiksha Raj
AAML
29
5
0
08 Jul 2022
Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities
Julian Bitterwolf
Alexander Meinke
Maximilian Augustin
Matthias Hein
OODD
13
25
0
20 Jun 2022
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
30
26
0
16 May 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
195
418
0
16 May 2022
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
17
6
0
31 Jan 2022
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
24
14
0
02 Nov 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Dynamic Neural Network Architectural and Topological Adaptation and Related Methods -- A Survey
Lorenz Kummer
AI4CE
32
0
0
28 Jul 2021
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
OOD
28
49
0
28 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
37
19
0
17 Jun 2021
Learning Energy-Based Models With Adversarial Training
Xuwang Yin
Shiying Li
Gustavo K. Rohde
AAML
DiffM
30
9
0
11 Dec 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Explaining Visual Models by Causal Attribution
Álvaro Parafita
Jordi Vitrià
CML
FAtt
62
35
0
19 Sep 2019
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
186
272
0
03 Dec 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
1