Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.12537
Cited By
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
27 March 2020
Andreas Kirsch
Clare Lyle
Y. Gal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning"
14 / 14 papers shown
Title
Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration
Kotaro Yoshida
Hiroki Naganuma
68
1
0
31 Jan 2024
Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression
I. Butakov
Alexander Tolmachev
S. Malanchuk
A. Neopryatnaya
Alexey Frolov
K. Andreev
16
4
0
13 May 2023
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility
Behrooz Razeghi
Flavio du Pin Calmon
Deniz Gunduz
S. Voloshynovskiy
27
15
0
11 Jul 2022
Compressing Features for Learning with Noisy Labels
Yingyi Chen
S. Hu
Xin Shen
C. Ai
Johan A. K. Suykens
NoLa
13
13
0
27 Jun 2022
Optimal Randomized Approximations for Matrix based Renyi's Entropy
Yuxin Dong
Tieliang Gong
Shujian Yu
Chen Li
24
7
0
16 May 2022
A Note on "Assessing Generalization of SGD via Disagreement"
Andreas Kirsch
Y. Gal
FedML
UQCV
21
15
0
03 Feb 2022
Conditional entropy minimization principle for learning domain invariant representation features
Thuan Q. Nguyen
Boyang Lyu
Prakash Ishwar
matthias. scheutz
Shuchin Aeron
OOD
27
7
0
25 Jan 2022
A Closer Look at the Adversarial Robustness of Information Bottleneck Models
I. Korshunova
David Stutz
Alexander A. Alemi
Olivia Wiles
Sven Gowal
19
3
0
12 Jul 2021
A Practical & Unified Notation for Information-Theoretic Quantities in ML
Andreas Kirsch
Y. Gal
25
7
0
22 Jun 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
248
0
11 Jun 2021
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip H. S. Torr
Y. Gal
UD
UQCV
PER
BDL
18
145
0
23 Feb 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
42
51
0
14 Jan 2021
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
13
51
0
03 Sep 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1