Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.05867
Cited By
On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization
13 April 2020
Wei Huang
Weitao Du
R. Xu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization"
12 / 12 papers shown
Title
Analysis of the rate of convergence of an over-parametrized convolutional neural network image classifier learned by gradient descent
Michael Kohler
A. Krzyżak
Benjamin Walter
36
1
0
13 May 2024
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
67
2
0
02 Feb 2023
Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis
Wuyang Chen
Wei Huang
Xinyu Gong
Boris Hanin
Zhangyang Wang
40
7
0
11 May 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
21
2
0
04 Feb 2022
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Hanghang Tong
Jingrui He
AI4CE
31
33
0
16 Oct 2021
Convergence of Deep ReLU Networks
Yuesheng Xu
Haizhang Zhang
37
27
0
27 Jul 2021
Activation function design for deep networks: linearity and effective initialisation
Michael Murray
V. Abrol
Jared Tanner
ODL
LLMSV
29
18
0
17 May 2021
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Greg Yang
58
135
0
25 Jun 2020
The Spectrum of Fisher Information of Deep Networks Achieving Dynamical Isometry
Tomohiro Hayase
Ryo Karakida
29
7
0
14 Jun 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
236
0
04 Mar 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
350
0
14 Jun 2018
1