Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.09034
Cited By
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
20 April 2020
Damien Teney
Ehsan Abbasnejad
A. Hengel
OOD
SSL
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision"
19 / 19 papers shown
Title
Improving deep learning with prior knowledge and cognitive models: A survey on enhancing explainability, adversarial robustness and zero-shot learning
F. Mumuni
A. Mumuni
AAML
27
5
0
11 Mar 2024
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Chong Wang
Yuanhong Chen
Fengbei Liu
Yuyuan Liu
Davis J. McCarthy
Helen Frazer
Gustavo Carneiro
16
1
0
30 Nov 2023
Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals
Yanai Elazar
Bhargavi Paranjape
Hao Peng
Sarah Wiegreffe
Khyathi Raghavi
Vivek Srikumar
Sameer Singh
Noah A. Smith
AAML
OOD
21
0
0
16 Nov 2023
SMoA: Sparse Mixture of Adapters to Mitigate Multiple Dataset Biases
Yanchen Liu
Jing Yang
Yan Chen
Jing Liu
Huaqin Wu
MoE
32
2
0
28 Feb 2023
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers
Wanqian Yang
Polina Kirichenko
Micah Goldblum
A. Wilson
DRL
4
10
0
28 Nov 2022
Robustifying Sentiment Classification by Maximally Exploiting Few Counterfactuals
Maarten De Raedt
Fréderic Godin
Chris Develder
Thomas Demeester
6
1
0
21 Oct 2022
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
19
29
0
06 Jul 2022
Fact Checking with Insufficient Evidence
Pepa Atanasova
J. Simonsen
Christina Lioma
Isabelle Augenstein
22
14
0
05 Apr 2022
Language bias in Visual Question Answering: A Survey and Taxonomy
Desen Yuan
16
12
0
16 Nov 2021
Counterfactual Adversarial Learning with Representation Interpolation
Wen Wang
Boxin Wang
Ning Shi
Jinfeng Li
Bingyu Zhu
Xiangyu Liu
Rongxin Zhang
AAML
OOD
CML
14
2
0
10 Sep 2021
An Investigation of the (In)effectiveness of Counterfactually Augmented Data
Nitish Joshi
He He
OODD
19
46
0
01 Jul 2021
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests
Victor Veitch
Alexander DÁmour
Steve Yadlowsky
Jacob Eisenstein
OOD
9
91
0
31 May 2021
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
A. Hengel
20
86
0
12 May 2021
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
63
13
0
25 Apr 2021
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
28
122
0
15 Jan 2021
CBNet: A Novel Composite Backbone Network Architecture for Object Detection
Yudong Liu
Yongtao Wang
Siwei Wang
Tingting Liang
Qijie Zhao
Zhi Tang
Haibin Ling
ObjD
207
244
0
09 Sep 2019
e-SNLI: Natural Language Inference with Natural Language Explanations
Oana-Maria Camburu
Tim Rocktaschel
Thomas Lukasiewicz
Phil Blunsom
LRM
252
620
0
04 Dec 2018
Adversarial Example Generation with Syntactically Controlled Paraphrase Networks
Mohit Iyyer
John Wieting
Kevin Gimpel
Luke Zettlemoyer
AAML
GAN
185
711
0
17 Apr 2018
Learning Robust Representations of Text
Yitong Li
Trevor Cohn
Timothy Baldwin
OOD
147
15
0
20 Sep 2016
1