Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.11165
Cited By
Multi-Objective Counterfactual Explanations
23 April 2020
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Objective Counterfactual Explanations"
47 / 47 papers shown
Title
Why Are You Wrong? Counterfactual Explanations for Language Grounding with 3D Objects
Tobias Preintner
Weixuan Yuan
Qi Huang
Adrian König
Thomas Bäck
E. Raponi
N. V. Stein
29
0
0
09 May 2025
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
Volkan Bakir
Polat Goktas
Sureyya Akyuz
50
0
0
26 Apr 2025
Graph Counterfactual Explainable AI via Latent Space Traversal
Andreas Abildtrup Hansen
Paraskevas Pegios
Anna Calissano
Aasa Feragen
OOD
BDL
AAML
83
0
0
15 Jan 2025
Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
Keita Kinjo
34
1
0
10 Jan 2025
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
37
1
0
18 Oct 2024
Counterfactual Metarules for Local and Global Recourse
Tom Bewley
Salim I. Amoukou
Saumitra Mishra
Daniele Magazzeni
Manuela Veloso
42
1
0
29 May 2024
Trustworthy Actionable Perturbations
Jesse Friedbaum
S. Adiga
Ravi Tandon
AAML
38
2
0
18 May 2024
Learning Actionable Counterfactual Explanations in Large State Spaces
Keziah Naggita
Matthew R. Walter
Avrim Blum
OffRL
33
0
0
25 Apr 2024
Generating Counterfactual Trajectories with Latent Diffusion Models for Concept Discovery
Payal Varshney
Adriano Lucieri
Christoph Balada
Andreas Dengel
Sheraz Ahmed
MedIm
DiffM
46
4
0
16 Apr 2024
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
B. Bischl
Marvin N. Wright
AAML
32
5
0
04 Apr 2024
Even-Ifs From If-Onlys: Are the Best Semi-Factual Explanations Found Using Counterfactuals As Guides?
Saugat Aryal
Mark T. Keane
32
4
0
01 Mar 2024
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
26
0
0
20 Nov 2023
Finding Optimal Diverse Feature Sets with Alternative Feature Selection
Jakob Bach
15
1
0
21 Jul 2023
On the Connection between Game-Theoretic Feature Attributions and Counterfactual Explanations
Emanuele Albini
Shubham Sharma
Saumitra Mishra
Danial Dervovic
Daniele Magazzeni
FAtt
46
2
0
13 Jul 2023
Explainable Predictive Maintenance
Sepideh Pashami
Sławomir Nowaczyk
Yuantao Fan
Jakub Jakubowski
Nuno Paiva
...
Bruno Veloso
M. Sayed-Mouchaweh
L. Rajaoarisoa
Grzegorz J. Nalepa
João Gama
32
8
0
08 Jun 2023
BELLA: Black box model Explanations by Local Linear Approximations
N. Radulovic
Albert Bifet
Fabian M. Suchanek
FAtt
31
1
0
18 May 2023
counterfactuals: An R Package for Counterfactual Explanation Methods
Susanne Dandl
Andreas Hofheinz
Martin Binder
B. Bischl
Giuseppe Casalicchio
26
2
0
13 Apr 2023
Counterfactual Explanations of Neural Network-Generated Response Curves
Giorgio Morales
John W. Sheppard
14
1
0
08 Apr 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
32
7
0
26 Mar 2023
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
26
0
0
24 Mar 2023
Explaining Groups of Instances Counterfactually for XAI: A Use Case, Algorithm and User Study for Group-Counterfactuals
Greta Warren
Markt. Keane
Christophe Guéret
Eoin Delaney
26
13
0
16 Mar 2023
RACCER: Towards Reachable and Certain Counterfactual Explanations for Reinforcement Learning
Jasmina Gajcin
Ivana Dusparic
CML
24
3
0
08 Mar 2023
Finding Regions of Counterfactual Explanations via Robust Optimization
Donato Maragno
Jannis Kurtz
Tabea E. Rober
Rob Goedhart
cS. .Ilker Birbil
D. Hertog
44
21
0
26 Jan 2023
Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities
Jasmina Gajcin
Ivana Dusparic
CML
OffRL
35
8
0
21 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
30
53
0
16 Oct 2022
Greybox XAI: a Neural-Symbolic learning framework to produce interpretable predictions for image classification
Adrien Bennetot
Gianni Franchi
Javier Del Ser
Raja Chatila
Natalia Díaz Rodríguez
AAML
25
29
0
26 Sep 2022
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
44
18
0
31 May 2022
Keep Your Friends Close and Your Counterfactuals Closer: Improved Learning From Closest Rather Than Plausible Counterfactual Explanations in an Abstract Setting
Ulrike Kuhl
André Artelt
Barbara Hammer
32
24
0
11 May 2022
Let's Go to the Alien Zoo: Introducing an Experimental Framework to Study Usability of Counterfactual Explanations for Machine Learning
Ulrike Kuhl
André Artelt
Barbara Hammer
27
17
0
06 May 2022
Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning
M. Virgolin
Eric Medvet
T. Alderliesten
Peter A. N. Bosman
14
6
0
05 Apr 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
19
38
0
13 Mar 2022
Evaluating Feature Attribution Methods in the Image Domain
Arne Gevaert
Axel-Jan Rousseau
Thijs Becker
D. Valkenborg
T. D. Bie
Yvan Saeys
FAtt
21
22
0
22 Feb 2022
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
56
24
0
29 Jan 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis
Giovanni De Toni
Bruno Lepri
Andrea Passerini
CML
25
13
0
18 Jan 2022
Efficient Decompositional Rule Extraction for Deep Neural Networks
Mateo Espinosa Zarlenga
Z. Shams
M. Jamnik
14
16
0
24 Nov 2021
Solving the Class Imbalance Problem Using a Counterfactual Method for Data Augmentation
M. Temraz
Markt. Keane
21
42
0
05 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
26
49
0
27 Oct 2021
A Causal Perspective on Meaningful and Robust Algorithmic Recourse
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
27
16
0
16 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
19
26
0
29 Jun 2021
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
17
24
0
12 Apr 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
42
176
0
07 Mar 2021
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
15
397
0
19 Oct 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
27
62
0
11 Sep 2020
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
11
135
0
08 Jul 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
24
19
0
26 Jun 2020
1