Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.04176
Cited By
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
8 May 2020
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction"
9 / 9 papers shown
Title
A Review of Fairness and A Practical Guide to Selecting Context-Appropriate Fairness Metrics in Machine Learning
Caleb J. S. Barr
Olivia Erdelyi
Paul D. Docherty
Randolph C. Grace
FaML
63
0
0
10 Nov 2024
Probabilistic Scoring Lists for Interpretable Machine Learning
Jonas Hanselle
Stefan Heid
Zhigang Zeng
Eyke Hüllermeier
20
0
0
31 Jul 2024
Amazing Things Come From Having Many Good Models
Cynthia Rudin
Chudi Zhong
Lesia Semenova
Margo Seltzer
Ronald E. Parr
Jiachang Liu
Srikar Katta
Jon Donnelly
Harry Chen
Zachery Boner
21
23
0
05 Jul 2024
Feature Importance Measurement based on Decision Tree Sampling
Chao Huang
Diptesh Das
Koji Tsuda
FAtt
16
2
0
25 Jul 2023
Fair Spatial Indexing: A paradigm for Group Spatial Fairness
Sina shaham
Gabriel Ghinita
Cyrus Shahabi
12
0
0
05 Feb 2023
FasterRisk: Fast and Accurate Interpretable Risk Scores
Jiachang Liu
Chudi Zhong
Boxuan Li
Margo Seltzer
Cynthia Rudin
28
16
0
12 Oct 2022
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Zijie J. Wang
Alex Kale
Harsha Nori
P. Stella
M. Nunnally
Duen Horng Chau
Mihaela Vorvoreanu
J. W. Vaughan
R. Caruana
KELM
46
27
0
30 Jun 2022
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
43
196
0
06 Apr 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
1