ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.06001
  4. Cited By
Deep Learning Techniques for Inverse Problems in Imaging

Deep Learning Techniques for Inverse Problems in Imaging

12 May 2020
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
ArXiv (abs)PDFHTML

Papers citing "Deep Learning Techniques for Inverse Problems in Imaging"

50 / 250 papers shown
Title
Deformation-Compensated Learning for Image Reconstruction without Ground
  Truth
Deformation-Compensated Learning for Image Reconstruction without Ground Truth
Weijie Gan
Yu Sun
C. Eldeniz
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
107
14
0
12 Jul 2021
Solution of Physics-based Bayesian Inverse Problems with Deep Generative
  Priors
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
108
50
0
06 Jul 2021
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Riccardo Barbano
Ž. Kereta
A. Hauptmann
Simon Arridge
Bangti Jin
95
11
0
06 Jul 2021
Fixed points of nonnegative neural networks
Fixed points of nonnegative neural networks
Tomasz Piotrowski
Renato L. G. Cavalcante
Mateusz Gabor
256
8
0
30 Jun 2021
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
  Generative Priors
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and Generative Priors
Zhaoqiang Liu
Subhro Ghosh
Jonathan Scarlett
112
19
0
29 Jun 2021
Data augmentation for deep learning based accelerated MRI reconstruction
  with limited data
Data augmentation for deep learning based accelerated MRI reconstruction with limited data
Zalan Fabian
Reinhard Heckel
Mahdi Soltanolkotabi
OODMedIm
96
55
0
28 Jun 2021
Instance-Optimal Compressed Sensing via Posterior Sampling
Instance-Optimal Compressed Sensing via Posterior Sampling
A. Jalal
Sushrut Karmalkar
A. Dimakis
Eric Price
129
55
0
21 Jun 2021
Learning the optimal Tikhonov regularizer for inverse problems
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
Ernesto De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
104
35
0
11 Jun 2021
Phase Retrieval using Single-Instance Deep Generative Prior
Phase Retrieval using Single-Instance Deep Generative Prior
Kshitij Tayal
Raunak Manekar
Zhong Zhuang
David Yang
Vipin Kumar
F. Hofmann
Ju Sun
GAN
112
5
0
09 Jun 2021
Recovery Analysis for Plug-and-Play Priors using the Restricted
  Eigenvalue Condition
Recovery Analysis for Plug-and-Play Priors using the Restricted Eigenvalue Condition
Jiaming Liu
M. Salman Asif
B. Wohlberg
Ulugbek S. Kamilov
169
48
0
07 Jun 2021
OpReg-Boost: Learning to Accelerate Online Algorithms with Operator
  Regression
OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression
Nicola Bastianello
Andrea Simonetto
E. Dall’Anese
149
3
0
27 May 2021
A Geometry-Informed Deep Learning Framework for Ultra-Sparse 3D
  Tomographic Image Reconstruction
A Geometry-Informed Deep Learning Framework for Ultra-Sparse 3D Tomographic Image Reconstruction
Liyue Shen
Wei Zhao
D. Capaldi
John M. Pauly
Lei Xing
90
32
0
25 May 2021
Differentiable model-based adaptive optics for two-photon microscopy
Differentiable model-based adaptive optics for two-photon microscopy
Ivan Vishniakou
Johannes D. Seelig
MedIm
46
4
0
29 Apr 2021
Fast ABC with joint generative modelling and subset simulation
Fast ABC with joint generative modelling and subset simulation
Eliane Maalouf
D. Ginsbourger
N. Linde
116
0
0
16 Apr 2021
CoPE: Conditional image generation using Polynomial Expansions
CoPE: Conditional image generation using Polynomial Expansions
Grigorios G. Chrysos
Markos Georgopoulos
Yannis Panagakis
DiffM
90
12
0
11 Apr 2021
OGGN: A Novel Generalized Oracle Guided Generative Architecture for
  Modelling Inverse Function of Artificial Neural Networks
OGGN: A Novel Generalized Oracle Guided Generative Architecture for Modelling Inverse Function of Artificial Neural NetworksInternational Conference on Computer Vision and Image Processing (ICCVIP), 2025
Mohammad Aaftab
Mansi Sharma
76
1
0
08 Apr 2021
Graph Convolutional Networks for Model-Based Learning in Nonlinear
  Inverse Problems
Graph Convolutional Networks for Model-Based Learning in Nonlinear Inverse Problems
William Herzberg
D. Rowe
A. Hauptmann
S. Hamilton
GNNMedImAI4CE
79
38
0
28 Mar 2021
Provable Compressed Sensing with Generative Priors via Langevin Dynamics
Provable Compressed Sensing with Generative Priors via Langevin Dynamics
Thanh V. Nguyen
Gauri Jagatap
Chinmay Hegde
GAN
107
15
0
25 Feb 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
146
200
0
16 Feb 2021
Intermediate Layer Optimization for Inverse Problems using Deep
  Generative Models
Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
Giannis Daras
Joseph Dean
A. Jalal
A. Dimakis
DRL
277
91
0
15 Feb 2021
An End-To-End-Trainable Iterative Network Architecture for Accelerated
  Radial Multi-Coil 2D Cine MR Image Reconstruction
An End-To-End-Trainable Iterative Network Architecture for Accelerated Radial Multi-Coil 2D Cine MR Image Reconstruction
A. Kofler
Markus Haltmeier
T. Schaeffter
C. Kolbitsch
3DV
117
25
0
01 Feb 2021
SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees
SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees
Jiaming Liu
Yu Sun
Weijie Gan
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
FedMLMedIm
115
31
0
22 Jan 2021
Can stable and accurate neural networks be computed? -- On the barriers
  of deep learning and Smale's 18th problem
Can stable and accurate neural networks be computed? -- On the barriers of deep learning and Smale's 18th problem
Matthew J. Colbrook
Vegard Antun
A. Hansen
177
143
0
20 Jan 2021
Model-Based Deep Learning
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
254
367
0
15 Dec 2020
Phase Retrieval with Holography and Untrained Priors: Tackling the
  Challenges of Low-Photon Nanoscale Imaging
Phase Retrieval with Holography and Untrained Priors: Tackling the Challenges of Low-Photon Nanoscale Imaging
Hannah Lawrence
David A. Barmherzig
Henry Li
Michael Eickenberg
Marylou Gabrié
64
12
0
14 Dec 2020
Deep Neural Networks Are Effective At Learning High-Dimensional
  Hilbert-Valued Functions From Limited Data
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
183
33
0
11 Dec 2020
Convex Regularization Behind Neural Reconstruction
Convex Regularization Behind Neural Reconstruction
Arda Sahiner
Morteza Mardani
Batu Mehmet Ozturkler
Mert Pilanci
John M. Pauly
109
25
0
09 Dec 2020
2-Step Sparse-View CT Reconstruction with a Domain-Specific Perceptual
  Network
2-Step Sparse-View CT Reconstruction with a Domain-Specific Perceptual Network
Haoyu Wei
Florian Schiffers
Tobias Würfl
Daming Shen
Daniel Kim
Aggelos K. Katsaggelos
O. Cossairt
113
20
0
08 Dec 2020
Model Adaptation for Inverse Problems in Imaging
Model Adaptation for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
OODMedIm
188
49
0
30 Nov 2020
Joint Reconstruction and Calibration using Regularization by Denoising
Joint Reconstruction and Calibration using Regularization by Denoising
Mingyang Xie
Yu Sun
Jiaming Liu
B. Wohlberg
Ulugbek S. Kamilov
113
10
0
26 Nov 2020
TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to
  Inverse Imaging Problems
TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Hua Huang
Carola-Bibiane Schönlieb
136
36
0
18 Nov 2020
Solving Inverse Problems With Deep Neural Networks -- Robustness
  Included?
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAMLOOD
95
114
0
09 Nov 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
  Solution Characterization for Computational Imaging
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational ImagingAAAI Conference on Artificial Intelligence (AAAI), 2024
He Sun
Katherine Bouman
UQCV
111
78
0
27 Oct 2020
Learning an optimal PSF-pair for ultra-dense 3D localization microscopy
Learning an optimal PSF-pair for ultra-dense 3D localization microscopy
E. Nehme
Boris Ferdman
Lucien E. Weiss
Tal Naor
Daniel Freedman
T. Michaeli
Y. Shechtman
122
5
0
29 Sep 2020
Fast ultrasonic imaging using end-to-end deep learning
Fast ultrasonic imaging using end-to-end deep learning
G. Pilikos
L. Horchens
K. Batenburg
Tristan van Leeuwen
F. Lucka
MedIm
54
8
0
04 Sep 2020
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold ProblemInternational Conference on Learning Representations (ICLR), 2025
Sam Buchanan
D. Gilboa
John N. Wright
305
41
0
25 Aug 2020
Stochastic Multi-level Composition Optimization Algorithms with
  Level-Independent Convergence Rates
Stochastic Multi-level Composition Optimization Algorithms with Level-Independent Convergence Rates
Krishnakumar Balasubramanian
Saeed Ghadimi
A. Nguyen
220
34
0
24 Aug 2020
Deep learning for photoacoustic imaging: a survey
Deep learning for photoacoustic imaging: a survey
Changchun Yang
Hengrong Lan
Feng Gao
Fei Gao
VLMMedIm
123
21
0
10 Aug 2020
Differentiable model-based adaptive optics with transmitted and
  reflected light
Differentiable model-based adaptive optics with transmitted and reflected light
Ivan Vishniakou
Johannes D. Seelig
MedIm
63
3
0
27 Jul 2020
Deep Learning Methods for Solving Linear Inverse Problems: Research
  Directions and Paradigms
Deep Learning Methods for Solving Linear Inverse Problems: Research Directions and Paradigms
Yanna Bai
Wei Chen
Jie Chen
Weisi Guo
145
73
0
27 Jul 2020
Robust Compressed Sensing using Generative Models
Robust Compressed Sensing using Generative ModelsNeural Information Processing Systems (NeurIPS), 2025
A. Jalal
Liu Liu
A. Dimakis
Constantine Caramanis
171
43
0
16 Jun 2020
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
Michael T. McCann
S. Ravishankar
71
8
0
09 Jun 2020
Constant-Expansion Suffices for Compressed Sensing with Generative
  Priors
Constant-Expansion Suffices for Compressed Sensing with Generative PriorsNeural Information Processing Systems (NeurIPS), 2025
C. Daskalakis
Dhruv Rohatgi
Manolis Zampetakis
88
15
0
07 Jun 2020
Scalable Plug-and-Play ADMM with Convergence Guarantees
Scalable Plug-and-Play ADMM with Convergence Guarantees
Yu Sun
Zihui Wu
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
BDL
133
83
0
05 Jun 2020
How to do Physics-based Learning
How to do Physics-based Learning
Michael R. Kellman
Michael Lustig
Laura Waller
PINNAI4CE
26
2
0
27 May 2020
Inverse Problems, Deep Learning, and Symmetry Breaking
Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal
Chieh-Hsin Lai
Vipin Kumar
Ju Sun
AI4CE
123
15
0
20 Mar 2020
Composing Normalizing Flows for Inverse Problems
Composing Normalizing Flows for Inverse Problems
Jay Whang
Erik M. Lindgren
A. Dimakis
TPM
153
53
0
26 Feb 2020
The troublesome kernel -- On hallucinations, no free lunches and the
  accuracy-stability trade-off in inverse problems
The troublesome kernel -- On hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems
N. Gottschling
Vegard Antun
A. Hansen
Ben Adcock
136
41
0
05 Jan 2020
Memory-efficient Learning for Large-scale Computational Imaging --
  NeurIPS deep inverse workshop
Memory-efficient Learning for Large-scale Computational Imaging -- NeurIPS deep inverse workshop
Michael R. Kellman
Jonathan I. Tamir
E. Bostan
Michael Lustig
Laura Waller
SupR
129
60
0
11 Dec 2019
One-dimensional Deep Image Prior for Time Series Inverse Problems
One-dimensional Deep Image Prior for Time Series Inverse Problems
Sriram Ravula
A. Dimakis
76
8
0
18 Apr 2019
Previous
12345