ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07186
  4. Cited By
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
v1v2 (latest)

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

14 May 2020
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors"

18 / 168 papers shown
Title
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
360
1,947
0
12 Nov 2020
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
  Distribution Uncertainty Estimation
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation
Aurick Zhou
Sergey Levine
BDLOODUQCV
43
13
0
05 Nov 2020
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCVBDL
130
86
0
28 Oct 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
136
64
0
19 Oct 2020
Towards Compact Neural Networks via End-to-End Training: A Bayesian
  Tensor Approach with Automatic Rank Determination
Towards Compact Neural Networks via End-to-End Training: A Bayesian Tensor Approach with Automatic Rank Determination
Cole Hawkins
Xing-er Liu
Zheng Zhang
BDLMQ
97
29
0
17 Oct 2020
Ensemble Distillation for Structured Prediction: Calibrated, Accurate,
  Fast-Choose Three
Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast-Choose Three
Steven Reich
David Mueller
Nicholas Andrews
BDLOODUQCV
54
13
0
13 Oct 2020
Training independent subnetworks for robust prediction
Training independent subnetworks for robust prediction
Marton Havasi
Rodolphe Jenatton
Stanislav Fort
Jeremiah Zhe Liu
Jasper Snoek
Balaji Lakshminarayanan
Andrew M. Dai
Dustin Tran
UQCVOOD
106
213
0
13 Oct 2020
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
  Ensembles
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
Huanrui Yang
Jingyang Zhang
Hongliang Dong
Nathan Inkawhich
Andrew B. Gardner
Andrew Touchet
Wesley Wilkes
Heath Berry
H. Li
AAML
83
109
0
30 Sep 2020
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
91
53
0
03 Sep 2020
Investigating maximum likelihood based training of infinite mixtures for
  uncertainty quantification
Investigating maximum likelihood based training of infinite mixtures for uncertainty quantification
Sina Daubener
Asja Fischer
BDLUQCV
36
2
0
07 Aug 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDLUQCV
66
121
0
11 Jul 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDLUQCV
81
17
0
08 Jul 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
101
212
0
24 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
290
452
0
17 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCVOODBDL
109
103
0
15 Jun 2020
The Dual Information Bottleneck
The Dual Information Bottleneck
Zoe Piran
Ravid Shwartz-Ziv
Naftali Tishby
61
15
0
08 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
116
60
0
17 May 2020
Informative Bayesian Neural Network Priors for Weak Signals
Informative Bayesian Neural Network Priors for Weak Signals
Tianyu Cui
A. Havulinna
Pekka Marttinen
Samuel Kaski
55
9
0
24 Feb 2020
Previous
1234