ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07186
  4. Cited By
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
v1v2 (latest)

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

14 May 2020
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors"

50 / 168 papers shown
Title
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCVBDL
71
1
0
12 Jul 2023
URL: A Representation Learning Benchmark for Transferable Uncertainty
  Estimates
URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
Michael Kirchhof
Bálint Mucsányi
Seong Joon Oh
Enkelejda Kasneci
UQCV
491
15
0
07 Jul 2023
Introspective Perception for Mobile Robots
Introspective Perception for Mobile Robots
Sadegh Rabiee
Joydeep Biswas
75
4
0
29 Jun 2023
Density Uncertainty Layers for Reliable Uncertainty Estimation
Density Uncertainty Layers for Reliable Uncertainty Estimation
Yookoon Park
David M. Blei
UQCVBDL
53
2
0
21 Jun 2023
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
  Learning under Distribution Shift
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
Florian Seligmann
P. Becker
Michael Volpp
Gerhard Neumann
UQCV
87
16
0
21 Jun 2023
Traversing Between Modes in Function Space for Fast Ensembling
Traversing Between Modes in Function Space for Fast Ensembling
Eunggu Yun
Hyungi Lee
G. Nam
Juho Lee
UQCV
62
3
0
20 Jun 2023
Exploring Resolution Fields for Scalable Image Compression with
  Uncertainty Guidance
Exploring Resolution Fields for Scalable Image Compression with Uncertainty Guidance
Dongyi Zhang
Feng Li
Man Liu
Runmin Cong
H. Bai
Ming Wang
Yao-Min Zhao
67
8
0
15 Jun 2023
A Dynamic Feature Interaction Framework for Multi-task Visual Perception
A Dynamic Feature Interaction Framework for Multi-task Visual Perception
Yuling Xi
Hao Chen
Ning Wang
Peng Wang
Yanning Zhang
Chunhua Shen
Yifan Liu
94
6
0
08 Jun 2023
Online Black-Box Confidence Estimation of Deep Neural Networks
Online Black-Box Confidence Estimation of Deep Neural Networks
Fabian Woitschek
G. Schneider
UQCV
63
1
0
27 Feb 2023
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation
  and Robustness under Distribution Shifts
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts
H. Bui
Anqi Liu
OODUQCV
185
6
0
13 Feb 2023
Pushing the Accuracy-Group Robustness Frontier with Introspective
  Self-play
Pushing the Accuracy-Group Robustness Frontier with Introspective Self-play
J. Liu
Krishnamurthy Dvijotham
Jihyeon Janel Lee
Quan Yuan
Martin Strobel
Balaji Lakshminarayanan
Deepak Ramachandran
75
5
0
11 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of
  Adversarial Examples
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
125
37
0
10 Feb 2023
Flat Seeking Bayesian Neural Networks
Flat Seeking Bayesian Neural Networks
Van-Anh Nguyen
L. Vuong
Hoang Phan
Thanh-Toan Do
Dinh Q. Phung
Trung Le
BDL
100
10
0
06 Feb 2023
Annealing Double-Head: An Architecture for Online Calibration of Deep
  Neural Networks
Annealing Double-Head: An Architecture for Online Calibration of Deep Neural Networks
Erdong Guo
D. Draper
Maria de Iorio
76
0
0
27 Dec 2022
Calibrating AI Models for Wireless Communications via Conformal
  Prediction
Calibrating AI Models for Wireless Communications via Conformal Prediction
K. Cohen
Sangwoo Park
Osvaldo Simeone
S. Shamai
109
6
0
15 Dec 2022
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
  Optimization
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty Optimization
Neslihan Kose
R. Krishnan
Akash Dhamasia
Omesh Tickoo
Michael Paulitsch
58
1
0
09 Dec 2022
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection
  Tasks
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
Neil Band
Tim G. J. Rudner
Qixuan Feng
Angelos Filos
Zachary Nado
Michael W. Dusenberry
Ghassen Jerfel
Dustin Tran
Y. Gal
OODUQCVBDL
54
54
0
23 Nov 2022
Weighted Ensemble Self-Supervised Learning
Weighted Ensemble Self-Supervised Learning
Yangjun Ruan
Saurabh Singh
Warren Morningstar
Alexander A. Alemi
Sergey Ioffe
Ian S. Fischer
Joshua V. Dillon
FedML
83
16
0
18 Nov 2022
On the Performance of Direct Loss Minimization for Bayesian Neural
  Networks
On the Performance of Direct Loss Minimization for Bayesian Neural Networks
Yadi Wei
Roni Khardon
BDL
47
3
0
15 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
80
57
0
11 Nov 2022
On the optimization and pruning for Bayesian deep learning
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDLUQCV
75
1
0
24 Oct 2022
Uncertainty estimation for out-of-distribution detection in
  computational histopathology
Uncertainty estimation for out-of-distribution detection in computational histopathology
Lea Goetz
OOD
66
0
0
18 Oct 2022
Packed-Ensembles for Efficient Uncertainty Estimation
Packed-Ensembles for Efficient Uncertainty Estimation
Olivier Laurent
Adrien Lafage
Enzo Tartaglione
Geoffrey Daniel
Jean-Marc Martinez
Andrei Bursuc
Gianni Franchi
OODD
142
32
0
17 Oct 2022
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
110
90
0
05 Oct 2022
On the detrimental effect of invariances in the likelihood for
  variational inference
On the detrimental effect of invariances in the likelihood for variational inference
Richard Kurle
R. Herbrich
Tim Januschowski
Bernie Wang
Jan Gasthaus
67
10
0
15 Sep 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
69
18
0
20 Jul 2022
Instance-Aware Observer Network for Out-of-Distribution Object
  Segmentation
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
73
1
0
18 Jul 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
134
126
0
15 Jul 2022
Incorporating functional summary information in Bayesian neural networks
  using a Dirichlet process likelihood approach
Incorporating functional summary information in Bayesian neural networks using a Dirichlet process likelihood approach
Vishnu Raj
Tianyu Cui
Markus Heinonen
Pekka Marttinen
UQCVBDL
35
1
0
04 Jul 2022
Transfer learning for ensembles: reducing computation time and keeping
  the diversity
Transfer learning for ensembles: reducing computation time and keeping the diversity
Ilya Shashkov
Nikita Balabin
Evgeny Burnaev
Alexey Zaytsev
95
1
0
27 Jun 2022
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
  Detection
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection
Xiongjie Chen
Yunpeng Li
Yongxin Yang
UQCVOODD
90
3
0
26 Jun 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
89
5
0
22 Jun 2022
Towards Better Selective Classification
Towards Better Selective Classification
Leo Feng
Mohamed Osama Ahmed
Hossein Hajimirsadeghi
A. Abdi
77
23
0
17 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCVBDL
96
31
0
17 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and
  accelerated sampling
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
84
7
0
15 Jun 2022
Tackling covariate shift with node-based Bayesian neural networks
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
BDLUQCV
59
6
0
06 Jun 2022
Feature Space Particle Inference for Neural Network Ensembles
Feature Space Particle Inference for Neural Network Ensembles
Shingo Yashima
Teppei Suzuki
Kohta Ishikawa
Ikuro Sato
Rei Kawakami
BDL
66
11
0
02 Jun 2022
Masked Bayesian Neural Networks : Computation and Optimality
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Yongdai Kim
TPM
51
1
0
02 Jun 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural
  Networks
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
90
13
0
20 May 2022
Prioritizing Corners in OoD Detectors via Symbolic String Manipulation
Prioritizing Corners in OoD Detectors via Symbolic String Manipulation
Chih-Hong Cheng
Changshun Wu
Emmanouil Seferis
Saddek Bensalem
130
3
0
16 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
231
51
0
01 May 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
41
5
0
30 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDLUD
94
51
0
30 Mar 2022
Robust PAC$^m$: Training Ensemble Models Under Misspecification and
  Outliers
Robust PACm^mm: Training Ensemble Models Under Misspecification and Outliers
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
89
5
0
03 Mar 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for
  multiple uncertainty types and tasks
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
92
28
0
02 Mar 2022
Embedded Ensembles: Infinite Width Limit and Operating Regimes
Embedded Ensembles: Infinite Width Limit and Operating Regimes
Maksim Velikanov
Roma Kail
Ivan Anokhin
Roman Vashurin
Maxim Panov
Alexey Zaytsev
Dmitry Yarotsky
47
1
0
24 Feb 2022
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Beau Coker
W. Bruinsma
David R. Burt
Weiwei Pan
Finale Doshi-Velez
UQCVBDL
89
24
0
23 Feb 2022
On Optimal Early Stopping: Over-informative versus Under-informative
  Parametrization
On Optimal Early Stopping: Over-informative versus Under-informative Parametrization
Ruoqi Shen
Liyao (Mars) Gao
Yi-An Ma
33
13
0
20 Feb 2022
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in
  Bayesian Deep Neural Networks
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks
Jurijs Nazarovs
Ronak R. Mehta
Vishnu Suresh Lokhande
Vikas Singh
UQCVBDLOOD
48
5
0
19 Feb 2022
Diversify and Disambiguate: Learning From Underspecified Data
Diversify and Disambiguate: Learning From Underspecified Data
Yoonho Lee
Huaxiu Yao
Chelsea Finn
288
66
0
07 Feb 2022
Previous
1234
Next