ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.07424
  4. Cited By
Exploring the Capabilities and Limits of 3D Monocular Object Detection
  -- A Study on Simulation and Real World Data

Exploring the Capabilities and Limits of 3D Monocular Object Detection -- A Study on Simulation and Real World Data

15 May 2020
Felix Nobis
Fabian Brunhuber
Simon Janssen
Johannes Betz
Markus Lienkamp
    3DPC
ArXivPDFHTML

Papers citing "Exploring the Capabilities and Limits of 3D Monocular Object Detection -- A Study on Simulation and Real World Data"

2 / 2 papers shown
Title
OBMO: One Bounding Box Multiple Objects for Monocular 3D Object
  Detection
OBMO: One Bounding Box Multiple Objects for Monocular 3D Object Detection
Chenxi Huang
Tong He
Haidong Ren
Wenxiao Wang
Binbin Lin
Deng Cai
32
10
0
20 Dec 2022
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Mingming Gong
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
185
1,707
0
06 Jun 2018
1