ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10785
  4. Cited By
Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
  Clipping

Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping

21 May 2020
Eduard A. Gorbunov
Marina Danilova
Alexander Gasnikov
ArXivPDFHTML

Papers citing "Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping"

26 / 26 papers shown
Title
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
35
0
0
11 Nov 2024
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
57
2
0
17 Oct 2024
From Gradient Clipping to Normalization for Heavy Tailed SGD
From Gradient Clipping to Normalization for Heavy Tailed SGD
Florian Hübler
Ilyas Fatkhullin
Niao He
40
5
0
17 Oct 2024
Differential Private Stochastic Optimization with Heavy-tailed Data:
  Towards Optimal Rates
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Jiafei Wu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
45
1
0
19 Aug 2024
Privacy of SGD under Gaussian or Heavy-Tailed Noise: Guarantees without Gradient Clipping
Privacy of SGD under Gaussian or Heavy-Tailed Noise: Guarantees without Gradient Clipping
Umut Simsekli
Mert Gurbuzbalaban
S. Yıldırım
Lingjiong Zhu
38
2
0
04 Mar 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
43
2
0
07 Feb 2024
General Tail Bounds for Non-Smooth Stochastic Mirror Descent
General Tail Bounds for Non-Smooth Stochastic Mirror Descent
Khaled Eldowa
Andrea Paudice
16
4
0
12 Dec 2023
High Probability Guarantees for Random Reshuffling
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
39
2
0
20 Nov 2023
Clip21: Error Feedback for Gradient Clipping
Clip21: Error Feedback for Gradient Clipping
Sarit Khirirat
Eduard A. Gorbunov
Samuel Horváth
Rustem Islamov
Fakhri Karray
Peter Richtárik
32
10
0
30 May 2023
Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
  High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation
Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises: High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation
Zijian Liu
Zhengyuan Zhou
24
10
0
22 Mar 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in
  Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
32
12
0
14 Feb 2023
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
Bryn Elesedy
Marcus Hutter
11
1
0
06 Feb 2023
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance)
  Noise in Federated Learning
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance) Noise in Federated Learning
Haibo Yang
Pei-Yuan Qiu
Jia Liu
FedML
27
12
0
03 Oct 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point
  Problems: A Survey
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
37
31
0
29 Aug 2022
High Probability Bounds for Stochastic Subgradient Schemes with Heavy
  Tailed Noise
High Probability Bounds for Stochastic Subgradient Schemes with Heavy Tailed Noise
D. A. Parletta
Andrea Paudice
Massimiliano Pontil
Saverio Salzo
34
9
0
17 Aug 2022
Learning from time-dependent streaming data with online stochastic
  algorithms
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
22
3
0
25 May 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean
  Norms
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
35
1
0
28 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general
  framework with applications to heavy-tail noise
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
17
12
0
06 Apr 2022
Flexible risk design using bi-directional dispersion
Flexible risk design using bi-directional dispersion
Matthew J. Holland
32
5
0
28 Mar 2022
Convergence Rates of Stochastic Gradient Descent under Infinite Noise
  Variance
Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance
Hongjian Wang
Mert Gurbuzbalaban
Lingjiong Zhu
Umut cSimcsekli
Murat A. Erdogdu
15
41
0
20 Feb 2021
Stability and Convergence of Stochastic Gradient Clipping: Beyond
  Lipschitz Continuity and Smoothness
Stability and Convergence of Stochastic Gradient Clipping: Beyond Lipschitz Continuity and Smoothness
Vien V. Mai
M. Johansson
23
38
0
12 Feb 2021
Advances in Electron Microscopy with Deep Learning
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
First-Order Methods for Convex Optimization
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
18
25
0
04 Jan 2021
Learning from History for Byzantine Robust Optimization
Learning from History for Byzantine Robust Optimization
Sai Praneeth Karimireddy
Lie He
Martin Jaggi
FedML
AAML
22
173
0
18 Dec 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
31
79
0
17 Sep 2020
Sharp Concentration Results for Heavy-Tailed Distributions
Sharp Concentration Results for Heavy-Tailed Distributions
Milad Bakhshizadeh
A. Maleki
Víctor Pena
9
21
0
30 Mar 2020
1