ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00104
  4. Cited By
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal
  Transport

OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport

29 May 2020
Derek Onken
Samy Wu Fung
Xingjian Li
Lars Ruthotto
    OT
ArXivPDFHTML

Papers citing "OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport"

33 / 33 papers shown
Title
Self-Balancing, Memory Efficient, Dynamic Metric Space Data Maintenance, for Rapid Multi-Kernel Estimation
Self-Balancing, Memory Efficient, Dynamic Metric Space Data Maintenance, for Rapid Multi-Kernel Estimation
Aditya S Ellendula
Chandrajit Bajaj
22
0
0
25 Apr 2025
Towards Hierarchical Rectified Flow
Towards Hierarchical Rectified Flow
Yichi Zhang
Yici Yan
A. Schwing
Zhizhen Zhao
52
1
0
24 Feb 2025
OT-Transformer: A Continuous-time Transformer Architecture with Optimal Transport Regularization
OT-Transformer: A Continuous-time Transformer Architecture with Optimal Transport Regularization
Kelvin Kan
Xingjian Li
Stanley Osher
99
2
0
30 Jan 2025
Local Flow Matching Generative Models
Local Flow Matching Generative Models
Chen Xu
Xiuyuan Cheng
Yao Xie
44
0
0
03 Jan 2025
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization
Chia-Yu Hung
Navonil Majumder
Zhifeng Kong
Ambuj Mehrish
Rafael Valle
Bryan Catanzaro
Soujanya Poria
Bryan Catanzaro
Soujanya Poria
52
5
0
30 Dec 2024
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold
  learning via well-posed generative flows
Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold learning via well-posed generative flows
Hyemin Gu
M. Katsoulakis
Luc Rey-Bellet
Benjamin J. Zhang
45
3
0
16 Jul 2024
Generative Topological Networks
Generative Topological Networks
Alona Levy-Jurgenson
Z. Yakhini
46
0
0
21 Jun 2024
A Differential Equation Approach for Wasserstein GANs and Beyond
A Differential Equation Approach for Wasserstein GANs and Beyond
Zachariah Malik
Yu-Jui Huang
24
0
0
25 May 2024
Sequential Flow Straightening for Generative Modeling
Sequential Flow Straightening for Generative Modeling
Jongmin Yoon
Juho Lee
29
0
0
09 Feb 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
39
4
0
20 Jan 2024
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Alexander Norcliffe
M. Deisenroth
23
3
0
21 Aug 2023
Computing high-dimensional optimal transport by flow neural networks
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
40
4
0
19 May 2023
Anamnesic Neural Differential Equations with Orthogonal Polynomial
  Projections
Anamnesic Neural Differential Equations with Orthogonal Polynomial Projections
E. Brouwer
Rahul G. Krishnan
AI4TS
17
0
0
03 Mar 2023
Proximal Residual Flows for Bayesian Inverse Problems
Proximal Residual Flows for Bayesian Inverse Problems
J. Hertrich
BDL
TPM
36
4
0
30 Nov 2022
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
48
50
0
04 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
  Preserving Flows
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
30
6
0
22 Sep 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with
  Rectified Flow
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
49
845
0
07 Sep 2022
A Flexible Diffusion Model
A Flexible Diffusion Model
Weitao Du
Tao Yang
Heidi Zhang
Yuanqi Du
DiffM
30
11
0
17 Jun 2022
Invertible Neural Networks for Graph Prediction
Invertible Neural Networks for Graph Prediction
Chen Xu
Xiuyuan Cheng
Yao Xie
GNN
25
9
0
02 Jun 2022
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for
  Population Dynamics
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics
Takeshi Koshizuka
Issei Sato
26
6
0
11 Apr 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal
  Optimization adjoint with Moving Speed
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei Chen
Jian Xu
Delu Zeng
32
7
0
19 Mar 2022
Multivariate Quantile Function Forecaster
Multivariate Quantile Function Forecaster
Kelvin K. Kan
Franccois-Xavier Aubet
Tim Januschowski
Youngsuk Park
Konstantinos Benidis
Lars Ruthotto
Jan Gasthaus
AI4TS
39
22
0
23 Feb 2022
Near-optimal estimation of smooth transport maps with kernel
  sums-of-squares
Near-optimal estimation of smooth transport maps with kernel sums-of-squares
Boris Muzellec
A. Vacher
Francis R. Bach
Franccois-Xavier Vialard
Alessandro Rudi
OT
32
20
0
03 Dec 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
Plugin Estimation of Smooth Optimal Transport Maps
Plugin Estimation of Smooth Optimal Transport Maps
Tudor Manole
Sivaraman Balakrishnan
Jonathan Niles-Weed
Larry A. Wasserman
OT
26
92
0
26 Jul 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
220
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Learning Differential Equations that are Easy to Solve
Learning Differential Equations that are Easy to Solve
Jacob Kelly
J. Bettencourt
Matthew J. Johnson
David Duvenaud
30
111
0
09 Jul 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
33
23
0
10 Jun 2020
1