ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00979
  4. Cited By
Acme: A Research Framework for Distributed Reinforcement Learning

Acme: A Research Framework for Distributed Reinforcement Learning

1 June 2020
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
Danila Sinopalnikov
Piotr Stańczyk
Sabela Ramos
Anton Raichuk
Damien Vincent
Léonard Hussenot
Robert Dadashi
Gabriel Dulac-Arnold
Manu Orsini
Alexis Jacq
Johan Ferret
Nino Vieillard
Seyed Kamyar Seyed Ghasemipour
Sertan Girgin
Olivier Pietquin
Feryal M. P. Behbahani
Tamara Norman
A. Abdolmaleki
Albin Cassirer
Fan Yang
Kate Baumli
Sarah Henderson
Abe Friesen
Ruba Haroun
Alexander Novikov
Sergio Gomez Colmenarejo
Serkan Cabi
Çağlar Gülçehre
T. Paine
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
ArXivPDFHTML

Papers citing "Acme: A Research Framework for Distributed Reinforcement Learning"

50 / 50 papers shown
Title
Acceleration for Deep Reinforcement Learning using Parallel and
  Distributed Computing: A Survey
Acceleration for Deep Reinforcement Learning using Parallel and Distributed Computing: A Survey
Zhihong Liu
Xin Xu
Peng Qiao
Dongsheng Li
OffRL
20
2
0
08 Nov 2024
Simplifying Deep Temporal Difference Learning
Simplifying Deep Temporal Difference Learning
Matteo Gallici
Mattie Fellows
Benjamin Ellis
B. Pou
Ivan Masmitja
Jakob Foerster
Mario Martin
OffRL
57
14
0
05 Jul 2024
SwiftRL: Towards Efficient Reinforcement Learning on Real
  Processing-In-Memory Systems
SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-Memory Systems
Kailash Gogineni
Sai Santosh Dayapule
Juan Gómez Luna
Karthikeya Gogineni
Peng Wei
Tian-Shing Lan
Mohammad Sadrosadati
Onur Mutlu
Guru Venkataramani
42
10
0
07 May 2024
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
Gokul Swamy
Christoph Dann
Rahul Kidambi
Zhiwei Steven Wu
Alekh Agarwal
OffRL
28
94
0
08 Jan 2024
Spreeze: High-Throughput Parallel Reinforcement Learning Framework
Spreeze: High-Throughput Parallel Reinforcement Learning Framework
Jing Hou
Guang Chen
Ruiqi Zhang
Zhijun Li
Shangding Gu
Changjun Jiang
OffRL
14
2
0
11 Dec 2023
GEAR: A GPU-Centric Experience Replay System for Large Reinforcement
  Learning Models
GEAR: A GPU-Centric Experience Replay System for Large Reinforcement Learning Models
Hanjing Wang
Man-Kit Sit
Cong He
Ying Wen
Weinan Zhang
J. Wang
Yaodong Yang
Luo Mai
OffRL
VLM
27
1
0
08 Oct 2023
Android in the Wild: A Large-Scale Dataset for Android Device Control
Android in the Wild: A Large-Scale Dataset for Android Device Control
Christopher Rawles
Alice Li
Daniel Rodriguez
Oriana Riva
Timothy Lillicrap
LM&Ro
16
137
0
19 Jul 2023
VIBR: Learning View-Invariant Value Functions for Robust Visual Control
VIBR: Learning View-Invariant Value Functions for Robust Visual Control
Tom Dupuis
Jaonary Rabarisoa
Q. C. Pham
David Filliat
25
0
0
14 Jun 2023
Coherent Soft Imitation Learning
Coherent Soft Imitation Learning
Joe Watson
Sandy H. Huang
Nicholas Heess
30
11
0
25 May 2023
Get Back Here: Robust Imitation by Return-to-Distribution Planning
Get Back Here: Robust Imitation by Return-to-Distribution Planning
Geoffrey Cideron
B. Tabanpour
Sebastian Curi
Sertan Girgin
Léonard Hussenot
Gabriel Dulac-Arnold
M. Geist
Olivier Pietquin
Robert Dadashi
OOD
76
2
0
02 May 2023
Optimal Transport for Offline Imitation Learning
Optimal Transport for Offline Imitation Learning
Yicheng Luo
Zhengyao Jiang
Samuel N. Cohen
Edward Grefenstette
M. Deisenroth
OffRL
22
26
0
24 Mar 2023
Risk-Averse Model Uncertainty for Distributionally Robust Safe
  Reinforcement Learning
Risk-Averse Model Uncertainty for Distributionally Robust Safe Reinforcement Learning
James Queeney
M. Benosman
OOD
OffRL
22
5
0
30 Jan 2023
Sample Efficient Deep Reinforcement Learning via Local Planning
Sample Efficient Deep Reinforcement Learning via Local Planning
Dong Yin
S. Thiagarajan
N. Lazić
Nived Rajaraman
Botao Hao
Csaba Szepesvári
15
4
0
29 Jan 2023
PushWorld: A benchmark for manipulation planning with tools and movable
  obstacles
PushWorld: A benchmark for manipulation planning with tools and movable obstacles
Ken Kansky
Skanda Vaidyanath
Scott Swingle
Xinghua Lou
Miguel Lazaro-Gredilla
Dileep George
11
4
0
24 Jan 2023
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player
  Multi-Agent Learning Toolbox
Distributed Deep Reinforcement Learning: A Survey and A Multi-Player Multi-Agent Learning Toolbox
Qiyue Yin
Tongtong Yu
S. Shen
Jun Yang
Meijing Zhao
Kaiqi Huang
Bin Liang
Liangsheng Wang
OffRL
11
13
0
01 Dec 2022
Multi-Agent Reinforcement Learning for Microprocessor Design Space
  Exploration
Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
Srivatsan Krishnan
Natasha Jaques
Shayegan Omidshafiei
Dan Zhang
Izzeddin Gur
Vijay Janapa Reddi
Aleksandra Faust
19
2
0
29 Nov 2022
Solving Continuous Control via Q-learning
Solving Continuous Control via Q-learning
Tim Seyde
Peter Werner
Wilko Schwarting
Igor Gilitschenski
Martin Riedmiller
Daniela Rus
Markus Wulfmeier
OffRL
LRM
27
22
0
22 Oct 2022
Phantom -- A RL-driven multi-agent framework to model complex systems
Phantom -- A RL-driven multi-agent framework to model complex systems
Leo Ardon
Jared Vann
Deepeka Garg
Thomas Spooner
Sumitra Ganesh
25
7
0
12 Oct 2022
MSRL: Distributed Reinforcement Learning with Dataflow Fragments
MSRL: Distributed Reinforcement Learning with Dataflow Fragments
Huanzhou Zhu
Bo Zhao
Gang Chen
Weifeng Chen
Yijie Chen
Liang Shi
Yaodong Yang
Peter R. Pietzuch
Lei Chen
OffRL
MoE
11
6
0
03 Oct 2022
Lamarckian Platform: Pushing the Boundaries of Evolutionary
  Reinforcement Learning towards Asynchronous Commercial Games
Lamarckian Platform: Pushing the Boundaries of Evolutionary Reinforcement Learning towards Asynchronous Commercial Games
Hui Bai
R. Shen
Yue Lin
Bo Xu
Ran Cheng
VLM
21
5
0
21 Sep 2022
Optimizing Industrial HVAC Systems with Hierarchical Reinforcement
  Learning
Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning
William Wong
Praneet Dutta
Octavian Voicu
Yuri Chervonyi
Cosmin Paduraru
Jerry Luo
OffRL
AI4CE
11
5
0
16 Sep 2022
Fast Population-Based Reinforcement Learning on a Single Machine
Fast Population-Based Reinforcement Learning on a Single Machine
Arthur Flajolet
Claire Bizon Monroc
Karim Beguir
Thomas Pierrot
OffRL
8
10
0
17 Jun 2022
GMI-DRL: Empowering Multi-GPU Deep Reinforcement Learning with GPU
  Spatial Multiplexing
GMI-DRL: Empowering Multi-GPU Deep Reinforcement Learning with GPU Spatial Multiplexing
Yuke Wang
Boyuan Feng
Z. Wang
Tong Geng
Ang Li
Yufei Ding
AI4CE
44
0
0
16 Jun 2022
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Benjamin Eysenbach
Tianjun Zhang
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
23
137
0
15 Jun 2022
Action Noise in Off-Policy Deep Reinforcement Learning: Impact on
  Exploration and Performance
Action Noise in Off-Policy Deep Reinforcement Learning: Impact on Exploration and Performance
Jakob J. Hollenstein
Sayantan Auddy
Matteo Saveriano
Erwan Renaudo
J. Piater
26
17
0
08 Jun 2022
Reincarnating Reinforcement Learning: Reusing Prior Computation to
  Accelerate Progress
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress
Rishabh Agarwal
Max Schwarzer
P. S. Castro
Aaron C. Courville
Marc G. Bellemare
OffRL
OnRL
21
63
0
03 Jun 2022
Incorporating Explicit Uncertainty Estimates into Deep Offline
  Reinforcement Learning
Incorporating Explicit Uncertainty Estimates into Deep Offline Reinforcement Learning
David Brandfonbrener
Rémi Tachet des Combes
Romain Laroche
OffRL
29
5
0
02 Jun 2022
Fast Inference and Transfer of Compositional Task Structures for
  Few-shot Task Generalization
Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
Sungryull Sohn
Hyunjae Woo
Jongwook Choi
lyubing qiang
Izzeddin Gur
Aleksandra Faust
Honglak Lee
BDL
OffRL
24
3
0
25 May 2022
Revisiting Gaussian mixture critics in off-policy reinforcement
  learning: a sample-based approach
Revisiting Gaussian mixture critics in off-policy reinforcement learning: a sample-based approach
Bobak Shahriari
A. Abdolmaleki
Arunkumar Byravan
A. Friesen
Siqi Liu
Jost Tobias Springenberg
N. Heess
Matthew W. Hoffman
Martin Riedmiller
OffRL
28
9
0
21 Apr 2022
Intelligent Autonomous Intersection Management
Intelligent Autonomous Intersection Management
Udesh Gunarathna
S. Karunasekera
Renata Borovica-Gajic
E. Tanin
8
3
0
09 Feb 2022
Environment Generation for Zero-Shot Compositional Reinforcement
  Learning
Environment Generation for Zero-Shot Compositional Reinforcement Learning
Izzeddin Gur
Natasha Jaques
Yingjie Miao
Jongwook Choi
Manoj Kumar Tiwari
Honglak Lee
Aleksandra Faust
18
43
0
21 Jan 2022
Conservative Distributional Reinforcement Learning with Safety
  Constraints
Conservative Distributional Reinforcement Learning with Safety Constraints
Hengrui Zhang
Youfang Lin
Sheng Han
Shuo Wang
Kai Lv
OffRL
19
5
0
18 Jan 2022
Continuous Control with Action Quantization from Demonstrations
Continuous Control with Action Quantization from Demonstrations
Robert Dadashi
Léonard Hussenot
Damien Vincent
Sertan Girgin
Anton Raichuk
M. Geist
Olivier Pietquin
OffRL
24
23
0
19 Oct 2021
Collaborating with Humans without Human Data
Collaborating with Humans without Human Data
D. Strouse
Kevin R. McKee
M. Botvinick
Edward Hughes
Richard Everett
122
160
0
15 Oct 2021
Evaluating model-based planning and planner amortization for continuous
  control
Evaluating model-based planning and planner amortization for continuous control
Arunkumar Byravan
Leonard Hasenclever
Piotr Trochim
M. Berk Mirza
Alessandro Davide Ialongo
...
Jost Tobias Springenberg
A. Abdolmaleki
N. Heess
J. Merel
Martin Riedmiller
55
17
0
07 Oct 2021
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Takuya Hiraoka
Takahisa Imagawa
Taisei Hashimoto
Takashi Onishi
Yoshimasa Tsuruoka
6
103
0
05 Oct 2021
Implicitly Regularized RL with Implicit Q-Values
Implicitly Regularized RL with Implicit Q-Values
Nino Vieillard
Marcin Andrychowicz
Anton Raichuk
Olivier Pietquin
M. Geist
OffRL
11
9
0
16 Aug 2021
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body
  Simulation
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation
C. Freeman
Erik Frey
Anton Raichuk
Sertan Girgin
Igor Mordatch
Olivier Bachem
9
348
0
24 Jun 2021
What Matters for Adversarial Imitation Learning?
What Matters for Adversarial Imitation Learning?
Manu Orsini
Anton Raichuk
Léonard Hussenot
Damien Vincent
Robert Dadashi
Sertan Girgin
M. Geist
Olivier Bachem
Olivier Pietquin
Marcin Andrychowicz
34
77
0
01 Jun 2021
On Instrumental Variable Regression for Deep Offline Policy Evaluation
On Instrumental Variable Regression for Deep Offline Policy Evaluation
Yutian Chen
Liyuan Xu
Çağlar Gülçehre
T. Paine
A. Gretton
Nando de Freitas
Arnaud Doucet
OffRL
18
17
0
21 May 2021
Benchmarks for Deep Off-Policy Evaluation
Benchmarks for Deep Off-Policy Evaluation
Justin Fu
Mohammad Norouzi
Ofir Nachum
George Tucker
Ziyun Wang
...
Yutian Chen
Aviral Kumar
Cosmin Paduraru
Sergey Levine
T. Paine
ELM
OffRL
20
100
0
30 Mar 2021
Regularized Behavior Value Estimation
Regularized Behavior Value Estimation
Çağlar Gülçehre
Sergio Gomez Colmenarejo
Ziyun Wang
Jakub Sygnowski
T. Paine
Konrad Zolna
Yutian Chen
Matthew W. Hoffman
Razvan Pascanu
Nando de Freitas
OffRL
15
37
0
17 Mar 2021
Semi-supervised reward learning for offline reinforcement learning
Semi-supervised reward learning for offline reinforcement learning
Ksenia Konyushkova
Konrad Zolna
Y. Aytar
Alexander Novikov
Scott E. Reed
Serkan Cabi
Nando de Freitas
SSL
OffRL
56
23
0
12 Dec 2020
TLeague: A Framework for Competitive Self-Play based Distributed
  Multi-Agent Reinforcement Learning
TLeague: A Framework for Competitive Self-Play based Distributed Multi-Agent Reinforcement Learning
Peng Sun
Jiechao Xiong
Lei Han
Xinghai Sun
Shuxing Li
Jiawei Xu
Meng Fang
Zhengyou Zhang
OffRL
LRM
25
19
0
25 Nov 2020
RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem
RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem
Eric Liang
Zhanghao Wu
Michael Luo
Sven Mika
Joseph E. Gonzalez
Ion Stoica
AI4CE
8
9
0
25 Nov 2020
Critic Regularized Regression
Critic Regularized Regression
Ziyun Wang
Alexander Novikov
Konrad Zolna
Jost Tobias Springenberg
Scott E. Reed
...
Noah Y. Siegel
J. Merel
Çağlar Gülçehre
N. Heess
Nando de Freitas
OffRL
25
317
0
26 Jun 2020
Primal Wasserstein Imitation Learning
Primal Wasserstein Imitation Learning
Robert Dadashi
Léonard Hussenot
M. Geist
Olivier Pietquin
18
124
0
08 Jun 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,949
0
04 May 2020
Monotonic Value Function Factorisation for Deep Multi-Agent
  Reinforcement Learning
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
27
764
0
19 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
252
11,677
0
09 Mar 2017
1