ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.01272
  4. Cited By
Shapley explainability on the data manifold
v1v2v3v4 (latest)

Shapley explainability on the data manifold

1 June 2020
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
    FAttTDI
ArXiv (abs)PDFHTML

Papers citing "Shapley explainability on the data manifold"

19 / 69 papers shown
Title
Variable importance without impossible data
Variable importance without impossible data
Masayoshi Mase
Art B. Owen
Benjamin B. Seiler
73
7
0
31 May 2022
Fool SHAP with Stealthily Biased Sampling
Fool SHAP with Stealthily Biased Sampling
Gabriel Laberge
Ulrich Aïvodji
Satoshi Hara
M. Marchand
Foutse Khomh
MLAUAAMLFAtt
48
2
0
30 May 2022
Discovering and Explaining the Representation Bottleneck of Graph Neural
  Networks from Multi-order Interactions
Discovering and Explaining the Representation Bottleneck of Graph Neural Networks from Multi-order Interactions
Fang Wu
Siyuan Li
Lirong Wu
Dragomir R. Radev
Stan Z. Li
109
3
0
15 May 2022
Training Characteristic Functions with Reinforcement Learning:
  XAI-methods play Connect Four
Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four
S. Wäldchen
Felix Huber
Sebastian Pokutta
FAtt
63
8
0
23 Feb 2022
Guidelines and Evaluation of Clinical Explainable AI in Medical Image
  Analysis
Guidelines and Evaluation of Clinical Explainable AI in Medical Image Analysis
Weina Jin
Xiaoxiao Li
M. Fatehi
Ghassan Hamarneh
ELMXAI
76
95
0
16 Feb 2022
The Shapley Value in Machine Learning
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDIFAtt
119
216
0
11 Feb 2022
Exact Shapley Values for Local and Model-True Explanations of Decision
  Tree Ensembles
Exact Shapley Values for Local and Model-True Explanations of Decision Tree Ensembles
Thomas W. Campbell
H. Roder
R. Georgantas
J. Roder
FedMLTDIFAtt
67
16
0
16 Dec 2021
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDIFAtt
109
17
0
26 Nov 2021
Interpreting Representation Quality of DNNs for 3D Point Cloud
  Processing
Interpreting Representation Quality of DNNs for 3D Point Cloud Processing
Wen Shen
Qihan Ren
Dongrui Liu
Quanshi Zhang
3DPC
139
18
0
05 Nov 2021
Counterfactual Shapley Additive Explanations
Counterfactual Shapley Additive Explanations
Emanuele Albini
Jason Long
Danial Dervovic
Daniele Magazzeni
107
51
0
27 Oct 2021
Fast TreeSHAP: Accelerating SHAP Value Computation for Trees
Fast TreeSHAP: Accelerating SHAP Value Computation for Trees
Jilei Yang
FAtt
105
37
0
20 Sep 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAICML
84
1
0
08 Sep 2021
FastSHAP: Real-Time Shapley Value Estimation
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDIFAtt
155
134
0
15 Jul 2021
Local Explanation of Dialogue Response Generation
Local Explanation of Dialogue Response Generation
Yi-Lin Tuan
Connor Pryor
Wenhu Chen
Lise Getoor
Wenjie Wang
76
12
0
11 Jun 2021
Can We Faithfully Represent Masked States to Compute Shapley Values on a
  DNN?
Can We Faithfully Represent Masked States to Compute Shapley Values on a DNN?
Jie Ren
Zhanpeng Zhou
Qirui Chen
Quanshi Zhang
FAttTDI
84
8
0
22 May 2021
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
129
90
0
27 Oct 2020
Explainability for fair machine learning
Explainability for fair machine learning
T. Begley
Tobias Schwedes
Christopher Frye
Ilya Feige
FaMLFedML
101
47
0
14 Oct 2020
Human-interpretable model explainability on high-dimensional data
Human-interpretable model explainability on high-dimensional data
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
FAtt
52
10
0
14 Oct 2020
Information-Theoretic Visual Explanation for Black-Box Classifiers
Information-Theoretic Visual Explanation for Black-Box Classifiers
Jihun Yi
Eunji Kim
Siwon Kim
Sungroh Yoon
FAtt
88
6
0
23 Sep 2020
Previous
12