Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.02080
Cited By
v1
v2 (latest)
A mathematical model for automatic differentiation in machine learning
3 June 2020
Jérôme Bolte
Edouard Pauwels
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A mathematical model for automatic differentiation in machine learning"
37 / 37 papers shown
Title
Non-convergence to the optimal risk for Adam and stochastic gradient descent optimization in the training of deep neural networks
Thang Do
Arnulf Jentzen
Adrian Riekert
103
1
0
03 Mar 2025
Poor Man's Training on MCUs: A Memory-Efficient Quantized Back-Propagation-Free Approach
Yequan Zhao
Hai Li
Ian Young
Zheng Zhang
MQ
97
3
0
07 Nov 2024
Hamiltonian Monte Carlo on ReLU Neural Networks is Inefficient
Vu C. Dinh
L. Ho
Cuong V Nguyen
38
1
0
29 Oct 2024
Automatic Differentiation of Optimization Algorithms with Time-Varying Updates
Sheheryar Mehmood
Peter Ochs
77
1
0
21 Oct 2024
Developing Lagrangian-based Methods for Nonsmooth Nonconvex Optimization
Nachuan Xiao
Kuang-Yu Ding
Xiaoyin Hu
Kim-Chuan Toh
91
4
0
15 Apr 2024
Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
93
1
0
18 Mar 2024
On the numerical reliability of nonsmooth autodiff: a MaxPool case study
Ryan Boustany
88
1
0
05 Jan 2024
The Feature Speed Formula: a flexible approach to scale hyper-parameters of deep neural networks
Lénaic Chizat
Praneeth Netrapalli
148
4
0
30 Nov 2023
Piecewise Polynomial Regression of Tame Functions via Integer Programming
Gilles Bareilles
Johannes Aspman
Jiri Nemecek
Georgios Korpas
52
1
0
22 Nov 2023
Adam-family Methods with Decoupled Weight Decay in Deep Learning
Kuang-Yu Ding
Nachuan Xiao
Kim-Chuan Toh
56
3
0
13 Oct 2023
Tensor-Compressed Back-Propagation-Free Training for (Physics-Informed) Neural Networks
Yequan Zhao
Xinling Yu
Zhixiong Chen
Ziyue Liu
Sijia Liu
Zheng Zhang
PINN
71
11
0
18 Aug 2023
Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning
Yu-Shuen Tang
Zhimin Ding
Dimitrije Jankov
Binhang Yuan
Daniel Bourgeois
C. Jermaine
BDL
95
6
0
31 May 2023
Generalizing Adam to Manifolds for Efficiently Training Transformers
B. Brantner
MedIm
49
3
0
26 May 2023
Understanding Automatic Differentiation Pitfalls
Jan Huckelheim
Harshitha Menon
William S. Moses
Bruce Christianson
P. Hovland
Laurent Hascoet
PINN
58
4
0
12 May 2023
ω
ω
ω
PAP Spaces: Reasoning Denotationally About Higher-Order, Recursive Probabilistic and Differentiable Programs
Mathieu Huot
Alexander K. Lew
Vikash K. Mansinghka
S. Staton
38
7
0
21 Feb 2023
On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters
Wonyeol Lee
Sejun Park
A. Aiken
PINN
44
6
0
31 Jan 2023
Differentiating Nonsmooth Solutions to Parametric Monotone Inclusion Problems
Jérôme Bolte
Edouard Pauwels
Antonio Silveti-Falls
63
13
0
15 Dec 2022
Variants of SGD for Lipschitz Continuous Loss Functions in Low-Precision Environments
Michael R. Metel
58
1
0
09 Nov 2022
Lifted Bregman Training of Neural Networks
Xiaoyu Wang
Martin Benning
34
6
0
18 Aug 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
89
3
0
05 Aug 2022
Flexible Differentiable Optimization via Model Transformations
Mathieu Besançon
J. Garcia
B. Legat
Akshay Sharma
74
10
0
10 Jun 2022
On the complexity of nonsmooth automatic differentiation
Jérôme Bolte
Ryan Boustany
Edouard Pauwels
B. Pesquet-Popescu
52
2
0
01 Jun 2022
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
104
23
0
31 May 2022
Training invariances and the low-rank phenomenon: beyond linear networks
Thien Le
Stefanie Jegelka
82
33
0
28 Jan 2022
Path differentiability of ODE flows
S. Marx
Edouard Pauwels
60
2
0
11 Jan 2022
A Gradient Sampling Algorithm for Stratified Maps with Applications to Topological Data Analysis
Jacob Leygonie
Mathieu Carrière
Théo Lacombe
S. Oudot
41
9
0
01 Sep 2021
Stochastic Subgradient Descent Escapes Active Strict Saddles on Weakly Convex Functions
Pascal Bianchi
W. Hachem
S. Schechtman
13
11
0
04 Aug 2021
Numerical influence of ReLU'(0) on backpropagation
David Bertoin
Jérôme Bolte
Sébastien Gerchinovitz
Edouard Pauwels
80
0
0
23 Jun 2021
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Jérôme Bolte
Tam Le
Edouard Pauwels
Antonio Silveti-Falls
88
57
0
08 Jun 2021
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
99
28
0
04 May 2021
Second-order step-size tuning of SGD for non-convex optimization
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
ODL
41
10
0
05 Mar 2021
A General Descent Aggregation Framework for Gradient-based Bi-level Optimization
Risheng Liu
Pan Mu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
AI4CE
128
36
0
16 Feb 2021
The structure of conservative gradient fields
A. Lewis
Tonghua Tian
AI4CE
60
8
0
03 Jan 2021
Differentiable Programming à la Moreau
Vincent Roulet
Zaïd Harchaoui
81
5
0
31 Dec 2020
Incremental Without Replacement Sampling in Nonconvex Optimization
Edouard Pauwels
61
5
0
15 Jul 2020
On Correctness of Automatic Differentiation for Non-Differentiable Functions
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
83
41
0
12 Jun 2020
An Inertial Newton Algorithm for Deep Learning
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
PINN
ODL
117
64
0
29 May 2019
1