Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.02509
Cited By
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
3 June 2020
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence"
19 / 19 papers shown
Title
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
34
0
0
25 Apr 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
58
1
0
28 Jan 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY Estimation
Tony Tohme
Mohsen Sadr
K. Youcef-Toumi
N. Hadjiconstantinou
30
3
0
07 Jun 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
25
7
0
27 May 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
15
20
0
10 Apr 2023
Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models
Terrence Alsup
Tucker Hartland
Benjamin Peherstorfer
N. Petra
11
1
0
06 Dec 2022
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
Improving Task-free Continual Learning by Distributionally Robust Memory Evolution
Zhenyi Wang
Li Shen
Le Fang
Qiuling Suo
Tiehang Duan
Mingchen Gao
OOD
22
38
0
15 Jul 2022
An Accelerated Stochastic Algorithm for Solving the Optimal Transport Problem
Yiling Xie
Yiling Luo
X. Huo
14
10
0
02 Mar 2022
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
25
15
0
25 Feb 2022
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
13
50
0
20 May 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
G. Reinert
Yvik Swan
22
35
0
07 May 2021
Sampling From the Wasserstein Barycenter
Chiheb Daaloul
Thibaut Le Gouic
J. Liandrat
M. I. O. Technology
11
6
0
04 May 2021
Multilevel Stein variational gradient descent with applications to Bayesian inverse problems
Terrence Alsup
Luca Venturi
Benjamin Peherstorfer
11
5
0
05 Apr 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
19
22
0
25 Feb 2021
Random Coordinate Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
10
11
0
03 Oct 2020
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
127
1,198
0
16 Aug 2016
1