ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.02985
  4. Cited By
Bayesian workflow for disease transmission modeling in Stan
v1v2v3 (latest)

Bayesian workflow for disease transmission modeling in Stan

23 May 2020
Léo Grinsztajn
Elizaveta Semenova
C. Margossian
J. Riou
ArXiv (abs)PDFHTML

Papers citing "Bayesian workflow for disease transmission modeling in Stan"

7 / 7 papers shown
Title
For how many iterations should we run Markov chain Monte Carlo?
For how many iterations should we run Markov chain Monte Carlo?
C. Margossian
Andrew Gelman
58
7
0
05 Nov 2023
PriorCVAE: scalable MCMC parameter inference with Bayesian deep
  generative modelling
PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling
Elizaveta Semenova
Prakhar Verma
Max Cairney-Leeming
Arno Solin
Samir Bhatt
Seth Flaxman
BDL
74
4
0
09 Apr 2023
Bayesian analysis of diffusion-driven multi-type epidemic models with
  application to COVID-19
Bayesian analysis of diffusion-driven multi-type epidemic models with application to COVID-19
Lampros Bouranis
N. Demiris
K. Kalogeropoulos
I. Ntzoufras
66
4
0
28 Nov 2022
Meta-Uncertainty in Bayesian Model Comparison
Meta-Uncertainty in Bayesian Model Comparison
Marvin Schmitt
Stefan T. Radev
Paul-Christian Bürkner
UD
58
10
0
13 Oct 2022
Epidemia: An R Package for Semi-Mechanistic Bayesian Modelling of
  Infectious Diseases using Point Processes
Epidemia: An R Package for Semi-Mechanistic Bayesian Modelling of Infectious Diseases using Point Processes
Shuhang Tan
Axel Gandy
Swapnil Mishra
Samir Bhatt
Seth Flaxman
H. Juliette T. Unwin
J. Ish-Horowicz
103
9
0
24 Oct 2021
Expectation Programming: Adapting Probabilistic Programming Systems to
  Estimate Expectations Efficiently
Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently
Tim Reichelt
Adam Goliñski
C.-H. Luke Ong
Tom Rainforth
TPM
60
0
0
09 Jun 2021
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
134
68
0
23 Jul 2020
1