Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.03509
Cited By
Triple descent and the two kinds of overfitting: Where & why do they appear?
5 June 2020
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Triple descent and the two kinds of overfitting: Where & why do they appear?"
19 / 19 papers shown
Title
A dynamic view of the double descent
Vivek Shripad Borkar
60
0
0
03 May 2025
Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
Xueyan Niu
Bo Bai
Lei Deng
Wei Han
31
6
0
14 May 2024
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity
V. Arora
Daniele Irto
Sebastian Goldt
G. Sanguinetti
36
2
0
21 Jun 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
27
1
0
08 Jun 2023
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
A Survey of Learning Curves with Bad Behavior: or How More Data Need Not Lead to Better Performance
Marco Loog
T. Viering
21
1
0
25 Nov 2022
Grokking phase transitions in learning local rules with gradient descent
Bojan Žunkovič
E. Ilievski
63
16
0
26 Oct 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
33
1
0
07 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
61
25
0
06 Dec 2021
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Tri Dao
Beidi Chen
Kaizhao Liang
Jiaming Yang
Zhao-quan Song
Atri Rudra
Christopher Ré
30
75
0
30 Nov 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
32
13
0
22 Oct 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
A. Gretton
MLT
33
35
0
06 Jun 2021
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
25
9
0
04 Jun 2021
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
18
122
0
19 Mar 2021
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
18
61
0
03 Aug 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
1