Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.03680
Cited By
Evaluating the Disentanglement of Deep Generative Models through Manifold Topology
5 June 2020
Sharon Zhou
E. Zelikman
F. Lu
A. Ng
Gunnar Carlsson
Stefano Ermon
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evaluating the Disentanglement of Deep Generative Models through Manifold Topology"
9 / 9 papers shown
Title
Towards Scalable Topological Regularizers
Hiu-Tung Wong
Darrick Lee
Hong Yan
BDL
59
0
0
24 Jan 2025
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
58
2
0
24 Aug 2023
Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)
Mathieu Pont
Julien Tierny
26
3
0
05 Jul 2023
Representation Topology Divergence: A Method for Comparing Neural Network Representations
S. Barannikov
I. Trofimov
Nikita Balabin
Evgeny Burnaev
3DPC
28
45
0
31 Dec 2021
Activation Landscapes as a Topological Summary of Neural Network Performance
Matthew Wheeler
Jose J. Bouza
Peter Bubenik
31
19
0
19 Oct 2021
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
279
10,354
0
12 Dec 2018
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
188
273
0
03 Dec 2018
Statistical topological data analysis using persistence landscapes
Peter Bubenik
106
846
0
27 Jul 2012
1