Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.04064
Cited By
v1
v2
v3 (latest)
Bayesian Graph Neural Networks with Adaptive Connection Sampling
7 June 2020
Arman Hasanzadeh
Ehsan Hajiramezanali
Shahin Boluki
Mingyuan Zhou
N. Duffield
Krishna R. Narayanan
Xiaoning Qian
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayesian Graph Neural Networks with Adaptive Connection Sampling"
35 / 35 papers shown
Title
FedGrAINS: Personalized SubGraph Federated Learning with Adaptive Neighbor Sampling
Emir Ceyani
Han Xie
Baturalp Buyukates
Carl Yang
Salman Avestimehr
FedML
291
0
0
22 Jan 2025
Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations
Richard Bergna
Sergio Calvo-Ordoñez
Felix L. Opolka
Pietro Liò
Jose Miguel Hernandez-Lobato
BDL
103
2
0
28 Aug 2024
Uncertainty in Graph Neural Networks: A Survey
Fangxin Wang
Yuqing Liu
Kay Liu
Yibo Wang
Sourav Medya
Philip S. Yu
AI4CE
127
10
0
11 Mar 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
204
10
0
27 Dec 2023
Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator
Siamak Zamani Dadaneh
Shahin Boluki
Mingzhang Yin
Mingyuan Zhou
Xiaoning Qian
BDL
DRL
41
22
0
21 May 2020
Network-principled deep generative models for designing drug combinations as graph sets
Mostafa Karimi
Arman Hasanzadeh
Yang Shen
GNN
45
31
0
16 Apr 2020
Learnable Bernoulli Dropout for Bayesian Deep Learning
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
BDL
51
34
0
12 Feb 2020
ARSM Gradient Estimator for Supervised Learning to Rank
Siamak Zamani Dadaneh
Shahin Boluki
Mingyuan Zhou
Xiaoning Qian
53
8
0
01 Nov 2019
Semi-Implicit Stochastic Recurrent Neural Networks
Ehsan Hajiramezanali
Arman Hasanzadeh
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDL
55
5
0
28 Oct 2019
Variational Graph Recurrent Neural Networks
Ehsan Hajiramezanali
Arman Hasanzadeh
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDL
GNN
74
187
0
26 Aug 2019
Semi-Implicit Graph Variational Auto-Encoders
Arman Hasanzadeh
Ehsan Hajiramezanali
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDL
GNN
77
132
0
19 Aug 2019
Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
Hao Fu
Chunyuan Li
Xiaodong Liu
Jianfeng Gao
Asli Celikyilmaz
Lawrence Carin
ODL
83
368
0
25 Mar 2019
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
Jishnu Mukhoti
Y. Gal
UQCV
BDL
99
225
0
30 Nov 2018
Bayesian graph convolutional neural networks for semi-supervised classification
Yingxue Zhang
Soumyasundar Pal
Mark Coates
Deniz Üstebay
GNN
BDL
91
229
0
27 Nov 2018
Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data
Ehsan Hajiramezanali
Siamak Zamani Dadaneh
Alireza Karbalayghareh
Mingyuan Zhou
Xiaoning Qian
69
52
0
22 Oct 2018
Differential Expression Analysis of Dynamical Sequencing Count Data with a Gamma Markov Chain
Ehsan Hajiramezanali
Siamak Zamani Dadaneh
P. Figueiredo
S. Sze
Mingyuan Zhou
Xiaoning Qian
50
11
0
07 Mar 2018
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
160
1,518
0
30 Jan 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
Qimai Li
Zhichao Han
Xiao-Ming Wu
GNN
SSL
199
2,844
0
22 Jan 2018
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Alessandro Sordoni
Marc-Alexandre Côté
Nan Rosemary Ke
Yoshua Bengio
BDL
84
185
0
15 Nov 2017
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
Aleksandar Bojchevski
Stephan Günnemann
BDL
99
648
0
12 Jul 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
529
15,379
0
07 Jun 2017
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
189
593
0
22 May 2017
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
159
3,598
0
21 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
371
5,393
0
03 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
709
29,220
0
09 Sep 2016
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
115
2,366
0
19 Nov 2015
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
93
490
0
15 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
236
1,519
0
08 Jun 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
321
751
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
914
9,370
0
06 Jun 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,501
0
22 Dec 2014
Signal Recovery on Graphs: Variation Minimization
Siheng Chen
A. Sandryhaila
José M. F. Moura
J. Kovacevic
87
271
0
26 Nov 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
486
16,915
0
20 Dec 2013
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
468
7,678
0
03 Jul 2012
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
120
499
0
27 Jun 2012
1