ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04176
  4. Cited By
Deep active inference agents using Monte-Carlo methods

Deep active inference agents using Monte-Carlo methods

7 June 2020
Z. Fountas
Noor Sajid
P. Mediano
Karl J. Friston
ArXivPDFHTML

Papers citing "Deep active inference agents using Monte-Carlo methods"

19 / 19 papers shown
Title
An Active Inference perspective on Neurofeedback Training
An Active Inference perspective on Neurofeedback Training
Côme Annicchiarico
F. Lotte
J. Mattout
44
0
0
06 May 2025
Boosting MCTS with Free Energy Minimization
Boosting MCTS with Free Energy Minimization
Mawaba Pascal Dao
Adrian Peter
81
0
0
22 Jan 2025
Object-centric proto-symbolic behavioural reasoning from pixels
Object-centric proto-symbolic behavioural reasoning from pixels
R. S. V. Bergen
Justus F. Hübotter
Pablo Lanillos
LM&Ro
OCL
98
0
0
26 Nov 2024
A general Markov decision process formalism for action-state
  entropy-regularized reward maximization
A general Markov decision process formalism for action-state entropy-regularized reward maximization
D. Grytskyy
Jorge Ramírez-Ruiz
R. Moreno-Bote
22
3
0
02 Feb 2023
Disentangling Shape and Pose for Object-Centric Deep Active Inference
  Models
Disentangling Shape and Pose for Object-Centric Deep Active Inference Models
Stefano Ferraro
Toon Van de Maele
Pietro Mazzaglia
Tim Verbelen
Bart Dhoedt
3DV
OCL
DRL
34
8
0
16 Sep 2022
Efficient search of active inference policy spaces using k-means
Efficient search of active inference policy spaces using k-means
Alex B. Kiefer
Mahault Albarracin
35
0
0
06 Sep 2022
Successor Representation Active Inference
Successor Representation Active Inference
Beren Millidge
Christopher L. Buckley
BDL
30
3
0
20 Jul 2022
Multi-Modal and Multi-Factor Branching Time Active Inference
Multi-Modal and Multi-Factor Branching Time Active Inference
Théophile Champion
Marek Grze's
Howard L. Bowman
29
2
0
24 Jun 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
38
25
0
20 Mar 2022
Goal-directed Planning and Goal Understanding by Active Inference:
  Evaluation Through Simulated and Physical Robot Experiments
Goal-directed Planning and Goal Understanding by Active Inference: Evaluation Through Simulated and Physical Robot Experiments
Takazumi Matsumoto
Wataru Ohata
Fabien C. Y. Benureau
Jun Tani
26
11
0
21 Feb 2022
pymdp: A Python library for active inference in discrete state spaces
pymdp: A Python library for active inference in discrete state spaces
Conor Heins
Beren Millidge
Daphne Demekas
Brennan Klein
Karl J. Friston
I. Couzin
Alexander Tschantz
AI4CE
48
48
0
11 Jan 2022
Branching Time Active Inference with Bayesian Filtering
Branching Time Active Inference with Bayesian Filtering
Théophile Champion
Marek Grze's
Howard L. Bowman
AI4CE
38
4
0
14 Dec 2021
Active Inference in Robotics and Artificial Agents: Survey and
  Challenges
Active Inference in Robotics and Artificial Agents: Survey and Challenges
Pablo Lanillos
Cristian Meo
Corrado Pezzato
A. Meera
Mohamed Baioumy
...
Alexander Tschantz
Beren Millidge
M. Wisse
Christopher L. Buckley
Jun Tani
AI4CE
45
75
0
03 Dec 2021
Active inference, Bayesian optimal design, and expected utility
Active inference, Bayesian optimal design, and expected utility
Noor Sajid
Lancelot Da Costa
Thomas Parr
Karl J. Friston
30
16
0
21 Sep 2021
Deep Active Inference for Pixel-Based Discrete Control: Evaluation on
  the Car Racing Problem
Deep Active Inference for Pixel-Based Discrete Control: Evaluation on the Car Racing Problem
Niels van Hoeffelen
Pablo Lanillos
DRL
AI4CE
BDL
32
6
0
09 Sep 2021
Applications of the Free Energy Principle to Machine Learning and
  Neuroscience
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
28
7
0
30 Jun 2021
Exploration and preference satisfaction trade-off in reward-free
  learning
Exploration and preference satisfaction trade-off in reward-free learning
Noor Sajid
P. Tigas
Alexey Zakharov
Z. Fountas
Karl J. Friston
22
20
0
08 Jun 2021
An empirical evaluation of active inference in multi-armed bandits
An empirical evaluation of active inference in multi-armed bandits
D. Marković
Hrvoje Stojić
Sarah Schwöbel
S. Kiebel
42
34
0
21 Jan 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1