Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.04780
Cited By
Lorentz Group Equivariant Neural Network for Particle Physics
8 June 2020
A. Bogatskiy
Brandon M. Anderson
Jan T. Offermann
M. Roussi
David W. Miller
Risi Kondor
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lorentz Group Equivariant Neural Network for Particle Physics"
50 / 101 papers shown
Title
The Surprising Effectiveness of Equivariant Models in Domains with Latent Symmetry
Dian Wang
Jung Yeon Park
Neel Sortur
Lawson L. S. Wong
Robin G. Walters
Robert W. Platt
AAML
32
33
0
16 Nov 2022
Moving Frame Net: SE(3)-Equivariant Network for Volumes
Mateus Sangalli
S. Blusseau
Santiago Velasco-Forero
Jesús Angulo
54
6
0
07 Nov 2022
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
16
30
0
01 Nov 2022
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Siqi Miao
Yunan Luo
Miaoyuan Liu
Pan Li
19
25
0
30 Oct 2022
Bridging Machine Learning and Sciences: Opportunities and Challenges
Taoli Cheng
UQCV
OOD
AI4CE
27
2
0
24 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
31
84
0
18 Oct 2022
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
27
2
0
17 Oct 2022
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
27
88
0
16 Oct 2022
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
33
16
0
09 Oct 2022
Analysis of (sub-)Riemannian PDE-G-CNNs
Gijs Bellaard
Daan Bon
Gautam Pai
B. Smets
R. Duits
AI4CE
30
12
0
03 Oct 2022
Machine learning and invariant theory
Ben Blum-Smith
Soledad Villar
AI4CE
31
16
0
29 Sep 2022
SELTO: Sample-Efficient Learned Topology Optimization
Sören Dittmer
David Erzmann
Henrik Harms
Peter Maass
29
2
0
12 Sep 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
21
6
0
18 Aug 2022
On the non-universality of deep learning: quantifying the cost of symmetry
Emmanuel Abbe
Enric Boix-Adserà
FedML
MLT
30
18
0
05 Aug 2022
BIP: Boost Invariant Polynomials for Efficient Jet Tagging
José M. Muñoz
Ilyes Batatia
Christoph Ortner
24
14
0
17 Jul 2022
On Merging Feature Engineering and Deep Learning for Diagnosis, Risk-Prediction and Age Estimation Based on the 12-Lead ECG
Eran Zvuloni
Jesse Read
Antônio H. Ribeiro
A. L. Ribeiro
Joachim A. Behar
12
21
0
13 Jul 2022
What is an equivariant neural network?
Lek-Heng Lim
Bradley J. Nelson
BDL
FedML
MLT
32
22
0
15 May 2022
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Nadav Dym
S. Gortler
21
39
0
05 May 2022
Learning Symmetric Embeddings for Equivariant World Models
Jung Yeon Park
Ondrej Biza
Linfeng Zhao
Jan Willem van de Meent
Robin G. Walters
23
42
0
24 Apr 2022
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
19
27
0
11 Mar 2022
A Simple and Universal Rotation Equivariant Point-cloud Network
Ben Finkelshtein
Chaim Baskin
Haggai Maron
Nadav Dym
3DPC
27
13
0
02 Mar 2022
Semi-Equivariant GNN Architectures for Jet Tagging
D. Murnane
S. Thais
Jason D. Wong
GNN
14
6
0
14 Feb 2022
Particle Transformer for Jet Tagging
H. Qu
Congqiao Li
Sitian Qian
ViT
MedIm
24
97
0
08 Feb 2022
Möbius Convolutions for Spherical CNNs
Thomas W. Mitchel
Noam Aigerman
Vladimir G. Kim
Michael Kazhdan
23
11
0
28 Jan 2022
Speeding up Learning Quantum States through Group Equivariant Convolutional Quantum Ansätze
Han Zheng
Zimu Li
Junyu Liu
Sergii Strelchuk
Risi Kondor
50
54
0
14 Dec 2021
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
42
113
0
07 Dec 2021
Residual Pathway Priors for Soft Equivariance Constraints
Marc Finzi
Gregory W. Benton
A. Wilson
BDL
UQCV
24
50
0
02 Dec 2021
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
19
27
0
19 Oct 2021
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
C. Pehlevan
15
5
0
14 Oct 2021
Efficient Differentiable Simulation of Articulated Bodies
Yi-Ling Qiao
Junbang Liang
V. Koltun
Ming Lin
AI4CE
34
55
0
16 Sep 2021
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy
Robin G. Walters
Yanchen Liu
Dashun Wang
Rose Yu
AI4CE
78
81
0
15 Sep 2021
A FAIR and AI-ready Higgs boson decay dataset
Yifan Chen
Eliu A. Huerta
Javier Mauricio Duarte
Philip C. Harris
Daniel S. Katz
...
Raghav Kansal
Sang Eon Park
Volodymyr V. Kindratenko
Zhizhen Zhao
R. Rusack
30
25
0
04 Aug 2021
Particle Convolution for High Energy Physics
C. Shimmin
17
15
0
05 Jul 2021
Shared Data and Algorithms for Deep Learning in Fundamental Physics
L. Benato
E. Buhmann
M. Erdmann
P. Fackeldey
J. Glombitza
...
T. Kuhr
J. Steinheimer
H. Stocker
Tilman Plehn
K. Zhou
PINN
OOD
24
15
0
01 Jul 2021
Equivariant Networks for Pixelized Spheres
Mehran Shakerinava
Siamak Ravanbakhsh
3DPC
23
19
0
12 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Encoding Involutory Invariances in Neural Networks
Anwesh Bhattacharya
M. Mattheakis
P. Protopapas
25
1
0
07 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
21
434
0
02 Jun 2021
Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators
Anindita Maiti
Keegan Stoner
James Halverson
23
20
0
01 Jun 2021
Symmetry-driven graph neural networks
Francesco Farina
E. Slade
34
4
0
28 May 2021
Invariant polynomials and machine learning
W. Haddadin
32
7
0
26 Apr 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
76
185
0
19 Apr 2021
Autoequivariant Network Search via Group Decomposition
Sourya Basu
A. Magesh
Harshit Yadav
L. Varshney
24
6
0
10 Apr 2021
Beyond permutation equivariance in graph networks
E. Slade
Francesco Farina
29
3
0
25 Mar 2021
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
27
53
0
21 Oct 2020
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
GPU coprocessors as a service for deep learning inference in high energy physics
J. Krupa
Kelvin Lin
M. Acosta Flechas
Jack T. Dinsmore
Javier Mauricio Duarte
...
K. Pedro
D. Rankin
Natchanon Suaysom
Matthew Trahms
N. Tran
BDL
3DV
8
32
0
20 Jul 2020
Computing Representations for Lie Algebraic Networks
N. Shutty
Casimir Wierzynski
13
2
0
01 Jun 2020
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
162
308
0
05 Nov 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Previous
1
2
3
Next