ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06015
  4. Cited By
Stochastic Segmentation Networks: Modelling Spatially Correlated
  Aleatoric Uncertainty

Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty

10 June 2020
Miguel A. B. Monteiro
Loic Le Folgoc
Daniel Coelho De Castro
Nick Pawlowski
Bernardo Marques
Konstantinos Kamnitsas
Mark van der Wilk
Ben Glocker
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty"

29 / 29 papers shown
Title
Dataset Distillation with Probabilistic Latent Features
Dataset Distillation with Probabilistic Latent Features
Zhe Li
Sarah Cechnicka
C. Ouyang
Katharina Breininger
Peter J. Schüffler
Bernhard Kainz
DD
44
0
0
10 May 2025
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
Moritz Vandenhirtz
Julia E. Vogt
38
0
0
09 May 2025
L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
J. Müller
Robert Wright
Thomas Day
Lorenzo Venturini
Samuel Budd
Hadrien Reynaud
J. Hajnal
Reza Razavi
B. Kainz
MedIm
59
0
0
13 Mar 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
89
1
0
25 Nov 2024
Advancing Medical Image Segmentation: Morphology-Driven Learning with
  Diffusion Transformer
Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer
Sungmin Kang
Jaeha Song
Jihie Kim
MedIm
34
2
0
01 Aug 2024
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
E. Nehme
Rotem Mulayoff
T. Michaeli
UQCV
42
2
0
24 May 2024
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Lingdong Kong
Xiang Xu
Jun Cen
Wenwei Zhang
Liang Pan
Kai-xiang Chen
Ziwei Liu
50
5
0
25 Mar 2024
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
49
0
0
25 Dec 2023
Uncertainty Visualization via Low-Dimensional Posterior Projections
Uncertainty Visualization via Low-Dimensional Posterior Projections
Omer Yair
E. Nehme
T. Michaeli
UQCV
35
2
0
12 Dec 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
35
20
0
09 Oct 2023
Application-driven Validation of Posteriors in Inverse Problems
Application-driven Validation of Posteriors in Inverse Problems
T. Adler
Jan-Hinrich Nolke
Annika Reinke
M. Tizabi
Sebastian Gruber
...
Lynton Ardizzone
Paul F. Jaeger
Florian Buettner
Ullrich Kothe
Lena Maier-Hein
MedIm
35
1
0
18 Sep 2023
Multi-modal Learning with Missing Modality via Shared-Specific Feature
  Modelling
Multi-modal Learning with Missing Modality via Shared-Specific Feature Modelling
Hu Wang
Yuanhong Chen
Congbo Ma
Jodie Avery
Louise Hull
G. Carneiro
18
79
0
26 Jul 2023
Boundary-weighted logit consistency improves calibration of segmentation
  networks
Boundary-weighted logit consistency improves calibration of segmentation networks
Neerav Karani
Neel Dey
Polina Golland
17
3
0
16 Jul 2023
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CML
OffRL
19
0
0
02 Nov 2022
Uncertainty Estimation for 3D Dense Prediction via Cross-Point
  Embeddings
Uncertainty Estimation for 3D Dense Prediction via Cross-Point Embeddings
Kaiwen Cai
Chris Xiaoxuan Lu
Xiaowei Huang
3DPC
29
2
0
29 Sep 2022
Uncertainty-aware Multi-modal Learning via Cross-modal Random Network
  Prediction
Uncertainty-aware Multi-modal Learning via Cross-modal Random Network Prediction
Hu Wang
Jianpeng Zhang
Yuanhong Chen
Congbo Ma
Jodie Avery
Louise Hull
G. Carneiro
UQCV
14
18
0
22 Jul 2022
Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting
Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting
Bohan Tang
Yiqi Zhong
Chenxin Xu
Wei Wu
Ulrich Neumann
Yanfeng Wang
Ya-Qin Zhang
Siheng Chen
36
9
0
11 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
23
0
0
27 Jun 2022
Structured Uncertainty in the Observation Space of Variational
  Autoencoders
Structured Uncertainty in the Observation Space of Variational Autoencoders
James A. G. Langley
M. Monteiro
Charles Jones
Nick Pawlowski
Ben Glocker
CML
OOD
BDL
DRL
31
2
0
25 May 2022
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image
  Segmentation with Ambiguous Labels
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels
Sun-Beom Hong
A. Bonkhoff
Andrew Hoopes
Martin Bretzner
M. Schirmer
A. Giese
Adrian V. Dalca
Polina Golland
N. Rost
UQCV
27
7
0
13 Dec 2021
Diffusion Models for Implicit Image Segmentation Ensembles
Diffusion Models for Implicit Image Segmentation Ensembles
J. Wolleb
Robin Sandkühler
Florentin Bieder
Philippe Valmaggia
Philippe C. Cattin
DiffM
MedIm
VLM
12
267
0
06 Dec 2021
Exploring Feature Representation Learning for Semi-supervised Medical
  Image Segmentation
Exploring Feature Representation Learning for Semi-supervised Medical Image Segmentation
Huimin Wu
X. Li
Kwang-Ting Cheng
28
13
0
22 Nov 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Using Soft Labels to Model Uncertainty in Medical Image Segmentation
Using Soft Labels to Model Uncertainty in Medical Image Segmentation
Joao Lourencco Silva
Arlindo L. Oliveira
UQCV
16
19
0
26 Sep 2021
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and
  Supervised Lesion Detection
Deep Quantile Regression for Uncertainty Estimation in Unsupervised and Supervised Lesion Detection
H. Akrami
Anand A. Joshi
Sergul Aydore
Richard M. Leahy
UQCV
30
4
0
20 Sep 2021
Detecting when pre-trained nnU-Net models fail silently for Covid-19
  lung lesion segmentation
Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation
Camila González
Karol Gotkowski
A. Bucher
Ricarda Fischbach
Isabel Kaltenborn
Anirban Mukhopadhyay
18
31
0
13 Jul 2021
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
178
53
0
19 May 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
273
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1