ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06730
  4. Cited By
Is deep learning necessary for simple classification tasks?

Is deep learning necessary for simple classification tasks?

11 June 2020
Joseph D. Romano
Trang T. Le
Weixuan Fu
J. Moore
ArXivPDFHTML

Papers citing "Is deep learning necessary for simple classification tasks?"

12 / 12 papers shown
Title
Neuroevolution in Deep Neural Networks: Current Trends and Future
  Challenges
Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges
E. Galván
P. Mooney
53
130
0
09 Jun 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
146
617
0
13 Mar 2020
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
174
1,628
0
28 Dec 2018
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
70
169
0
19 Oct 2018
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and
  Comparison
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
211
377
0
01 Mar 2017
Benchmarking State-of-the-Art Deep Learning Software Tools
Benchmarking State-of-the-Art Deep Learning Software Tools
Shaoshuai Shi
Qiang-qiang Wang
Pengfei Xu
Xiaowen Chu
BDL
39
329
0
25 Aug 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
123
3,672
0
10 Jun 2016
Evaluation of a Tree-based Pipeline Optimization Tool for Automating
  Data Science
Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science
Randal S. Olson
Nathan Bartley
Ryan J. Urbanowicz
J. Moore
41
524
0
20 Mar 2016
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
361
37,815
0
09 Mar 2016
Automating biomedical data science through tree-based pipeline
  optimization
Automating biomedical data science through tree-based pipeline optimization
Randal S. Olson
Ryan J. Urbanowicz
Peter C. Andrews
Nicole A. Lavender
L. C. Kidd
J. Moore
AI4CE
47
313
0
28 Jan 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
176
16,311
0
30 Apr 2014
1