ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07253
  4. Cited By
Dynamic Model Pruning with Feedback

Dynamic Model Pruning with Feedback

12 June 2020
Tao R. Lin
Sebastian U. Stich
Luis Barba
Daniil Dmitriev
Martin Jaggi
ArXivPDFHTML

Papers citing "Dynamic Model Pruning with Feedback"

40 / 40 papers shown
Title
Advancing Weight and Channel Sparsification with Enhanced Saliency
Advancing Weight and Channel Sparsification with Enhanced Saliency
Xinglong Sun
Maying Shen
Hongxu Yin
Lei Mao
Pavlo Molchanov
Jose M. Alvarez
54
1
0
05 Feb 2025
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Nasib Ullah
Erik Schultheis
Mike Lasby
Yani Andrew Ioannou
Rohit Babbar
35
0
0
05 Nov 2024
Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models
Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models
Alireza Ganjdanesh
Reza Shirkavand
Shangqian Gao
Heng Huang
DiffM
VLM
56
4
0
17 Jun 2024
"Pass the butter": A study on desktop-classic multitasking robotic arm
  based on advanced YOLOv7 and BERT
"Pass the butter": A study on desktop-classic multitasking robotic arm based on advanced YOLOv7 and BERT
Haohua Que
Wenbin Pan
Jie Xu
Hao Luo
Pei Wang
Li Zhang
39
1
0
27 May 2024
Fast and Controllable Post-training Sparsity: Learning Optimal Sparsity
  Allocation with Global Constraint in Minutes
Fast and Controllable Post-training Sparsity: Learning Optimal Sparsity Allocation with Global Constraint in Minutes
Ruihao Gong
Yang Yong
Zining Wang
Jinyang Guo
Xiuying Wei
Yuqing Ma
Xianglong Liu
38
5
0
09 May 2024
ONNXPruner: ONNX-Based General Model Pruning Adapter
ONNXPruner: ONNX-Based General Model Pruning Adapter
Dongdong Ren
Wenbin Li
Tianyu Ding
Lei Wang
Qi Fan
Jing Huo
Hongbing Pan
Yang Gao
39
3
0
10 Apr 2024
DTMM: Deploying TinyML Models on Extremely Weak IoT Devices with Pruning
DTMM: Deploying TinyML Models on Extremely Weak IoT Devices with Pruning
Lixiang Han
Zhen Xiao
Zhenjiang Li
41
5
0
17 Jan 2024
EsaCL: Efficient Continual Learning of Sparse Models
EsaCL: Efficient Continual Learning of Sparse Models
Weijieying Ren
V. Honavar
CLL
25
3
0
11 Jan 2024
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Max Zimmer
Megi Andoni
Christoph Spiegel
Sebastian Pokutta
VLM
52
10
0
23 Dec 2023
NOLA: Compressing LoRA using Linear Combination of Random Basis
NOLA: Compressing LoRA using Linear Combination of Random Basis
Soroush Abbasi Koohpayegani
K. Navaneet
Parsa Nooralinejad
Soheil Kolouri
Hamed Pirsiavash
40
12
0
04 Oct 2023
FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental
  Regularization
FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization
Qianyu Long
Christos Anagnostopoulos
S. P. Parambath
Daning Bi
AI4CE
FedML
23
2
0
13 Sep 2023
Magnitude Attention-based Dynamic Pruning
Magnitude Attention-based Dynamic Pruning
Jihye Back
Namhyuk Ahn
Jang-Hyun Kim
28
2
0
08 Jun 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu (Allen) Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
32
29
0
03 Mar 2023
Pruning On-the-Fly: A Recoverable Pruning Method without Fine-tuning
Pruning On-the-Fly: A Recoverable Pruning Method without Fine-tuning
Danyang Liu
Xue Liu
25
0
0
24 Dec 2022
Spatial Mixture-of-Experts
Spatial Mixture-of-Experts
Nikoli Dryden
Torsten Hoefler
MoE
34
9
0
24 Nov 2022
On the optimization and pruning for Bayesian deep learning
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
35
1
0
24 Oct 2022
SInGE: Sparsity via Integrated Gradients Estimation of Neuron Relevance
SInGE: Sparsity via Integrated Gradients Estimation of Neuron Relevance
Edouard Yvinec
Arnaud Dapogny
Matthieu Cord
Kévin Bailly
42
9
0
08 Jul 2022
Compression-aware Training of Neural Networks using Frank-Wolfe
Compression-aware Training of Neural Networks using Frank-Wolfe
Max Zimmer
Christoph Spiegel
Sebastian Pokutta
29
9
0
24 May 2022
Perturbation of Deep Autoencoder Weights for Model Compression and
  Classification of Tabular Data
Perturbation of Deep Autoencoder Weights for Model Compression and Classification of Tabular Data
Manar D. Samad
Sakib Abrar
22
12
0
17 May 2022
Federated Progressive Sparsification (Purge, Merge, Tune)+
Federated Progressive Sparsification (Purge, Merge, Tune)+
Dimitris Stripelis
Umang Gupta
Greg Ver Steeg
J. Ambite
FedML
23
9
0
26 Apr 2022
On the Convergence of Heterogeneous Federated Learning with Arbitrary
  Adaptive Online Model Pruning
On the Convergence of Heterogeneous Federated Learning with Arbitrary Adaptive Online Model Pruning
Hanhan Zhou
Tian-Shing Lan
Guru Venkataramani
Wenbo Ding
FedML
32
6
0
27 Jan 2022
UDC: Unified DNAS for Compressible TinyML Models
UDC: Unified DNAS for Compressible TinyML Models
Igor Fedorov
Ramon Matas
Hokchhay Tann
Chu Zhou
Matthew Mattina
P. Whatmough
AI4CE
21
13
0
15 Jan 2022
How Well Do Sparse Imagenet Models Transfer?
How Well Do Sparse Imagenet Models Transfer?
Eugenia Iofinova
Alexandra Peste
Mark Kurtz
Dan Alistarh
27
38
0
26 Nov 2021
RGP: Neural Network Pruning through Its Regular Graph Structure
RGP: Neural Network Pruning through Its Regular Graph Structure
Zhuangzhi Chen
Jingyang Xiang
Yao Lu
Qi Xuan
Xiaoniu Yang
27
1
0
28 Oct 2021
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
CHIP: CHannel Independence-based Pruning for Compact Neural Networks
Yang Sui
Miao Yin
Yi Xie
Huy Phan
S. Zonouz
Bo Yuan
VLM
33
128
0
26 Oct 2021
Differentiable Network Pruning for Microcontrollers
Differentiable Network Pruning for Microcontrollers
Edgar Liberis
Nicholas D. Lane
22
18
0
15 Oct 2021
ProgFed: Effective, Communication, and Computation Efficient Federated
  Learning by Progressive Training
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
36
46
0
11 Oct 2021
RED++ : Data-Free Pruning of Deep Neural Networks via Input Splitting
  and Output Merging
RED++ : Data-Free Pruning of Deep Neural Networks via Input Splitting and Output Merging
Edouard Yvinec
Arnaud Dapogny
Matthieu Cord
Kévin Bailly
28
15
0
30 Sep 2021
Architecture Aware Latency Constrained Sparse Neural Networks
Architecture Aware Latency Constrained Sparse Neural Networks
Tianli Zhao
Qinghao Hu
Xiangyu He
Weixiang Xu
Jiaxing Wang
Cong Leng
Jian Cheng
33
0
0
01 Sep 2021
Training Compact CNNs for Image Classification using Dynamic-coded
  Filter Fusion
Training Compact CNNs for Image Classification using Dynamic-coded Filter Fusion
Mingbao Lin
Bohong Chen
Rongrong Ji
Rongrong Ji
VLM
30
23
0
14 Jul 2021
PQK: Model Compression via Pruning, Quantization, and Knowledge
  Distillation
PQK: Model Compression via Pruning, Quantization, and Knowledge Distillation
Jang-Hyun Kim
Simyung Chang
Nojun Kwak
22
44
0
25 Jun 2021
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
Shiwei Liu
Tianlong Chen
Xiaohan Chen
Zahra Atashgahi
Lu Yin
Huanyu Kou
Li Shen
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
37
111
0
19 Jun 2021
1xN Pattern for Pruning Convolutional Neural Networks
1xN Pattern for Pruning Convolutional Neural Networks
Mingbao Lin
Yu-xin Zhang
Yuchao Li
Bohong Chen
Rongrong Ji
Mengdi Wang
Shen Li
Yonghong Tian
Rongrong Ji
3DPC
33
40
0
31 May 2021
Sifting out the features by pruning: Are convolutional networks the
  winning lottery ticket of fully connected ones?
Sifting out the features by pruning: Are convolutional networks the winning lottery ticket of fully connected ones?
Franco Pellegrini
Giulio Biroli
49
6
0
27 Apr 2021
Time-Correlated Sparsification for Communication-Efficient Federated
  Learning
Time-Correlated Sparsification for Communication-Efficient Federated Learning
Emre Ozfatura
Kerem Ozfatura
Deniz Gunduz
FedML
38
47
0
21 Jan 2021
Dynamic Hard Pruning of Neural Networks at the Edge of the Internet
Dynamic Hard Pruning of Neural Networks at the Edge of the Internet
Lorenzo Valerio
F. M. Nardini
A. Passarella
R. Perego
17
12
0
17 Nov 2020
$μ$NAS: Constrained Neural Architecture Search for Microcontrollers
μμμNAS: Constrained Neural Architecture Search for Microcontrollers
Edgar Liberis
L. Dudziak
Nicholas D. Lane
BDL
15
103
0
27 Oct 2020
Progressive Skeletonization: Trimming more fat from a network at
  initialization
Progressive Skeletonization: Trimming more fat from a network at initialization
Pau de Jorge
Amartya Sanyal
Harkirat Singh Behl
Philip Torr
Grégory Rogez
P. Dokania
31
95
0
16 Jun 2020
Model Pruning Enables Efficient Federated Learning on Edge Devices
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
38
444
0
26 Sep 2019
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
126
259
0
10 Dec 2012
1