ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10503
  4. Cited By
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks

SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks

18 June 2020
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
    3DPC
ArXivPDFHTML

Papers citing "SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks"

50 / 412 papers shown
Title
Sampled Transformer for Point Sets
Sampled Transformer for Point Sets
Shidi Li
Christian J. Walder
Alexander Soen
Lexing Xie
Miaomiao Liu
3DPC
10
1
0
28 Feb 2023
Self-Supervised Category-Level Articulated Object Pose Estimation with
  Part-Level SE(3) Equivariance
Self-Supervised Category-Level Articulated Object Pose Estimation with Part-Level SE(3) Equivariance
Xueyi Liu
Ji Zhang
Ruizhen Hu
Haibin Huang
He-Nan Wang
Li Yi
3DPC
16
21
0
28 Feb 2023
Image to Sphere: Learning Equivariant Features for Efficient Pose
  Prediction
Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction
David M. Klee
Ondrej Biza
Robert W. Platt
Robin G. Walters
21
17
0
27 Feb 2023
Boosting Convolutional Neural Networks' Protein Binding Site Prediction
  Capacity Using SE(3)-invariant transformers, Transfer Learning and
  Homology-based Augmentation
Boosting Convolutional Neural Networks' Protein Binding Site Prediction Capacity Using SE(3)-invariant transformers, Transfer Learning and Homology-based Augmentation
Dae Lee
Jeunghyun Byun
Bonggun Shin
OOD
ViT
11
0
0
20 Feb 2023
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey
  from Precision to Interpretability
Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability
Zhiqiang Zhong
A. Barkova
Davide Mottin
14
8
0
16 Feb 2023
Transformer models: an introduction and catalog
Transformer models: an introduction and catalog
X. Amatriain
Ananth Sankar
Jie Bing
Praveen Kumar Bodigutla
Timothy J. Hazen
Michaeel Kazi
19
50
0
12 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
30
17
0
11 Feb 2023
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Alex Morehead
Jianlin Cheng
DiffM
14
22
0
08 Feb 2023
Attending to Graph Transformers
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
44
85
0
08 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
14
78
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property
  Prediction
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
28
8
0
06 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System
  modeling
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
8
6
0
02 Feb 2023
End-to-End Full-Atom Antibody Design
End-to-End Full-Atom Antibody Design
Xiangzhe Kong
Wenbing Huang
Yang Liu
11
48
0
01 Feb 2023
On the Expressive Power of Geometric Graph Neural Networks
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
42
82
0
23 Jan 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
17
15
0
21 Jan 2023
Everything is Connected: Graph Neural Networks
Everything is Connected: Graph Neural Networks
Petar Velickovic
GNN
AI4CE
20
178
0
19 Jan 2023
Heterogeneous Multi-Robot Reinforcement Learning
Heterogeneous Multi-Robot Reinforcement Learning
Matteo Bettini
Ajay Shankar
Amanda Prorok
17
39
0
17 Jan 2023
Equivariant Light Field Convolution and Transformer
Equivariant Light Field Convolution and Transformer
Yinshuang Xu
Jiahui Lei
Kostas Daniilidis
ViT
12
0
0
30 Dec 2022
INO: Invariant Neural Operators for Learning Complex Physical Systems
  with Momentum Conservation
INO: Invariant Neural Operators for Learning Complex Physical Systems with Momentum Conservation
Ning Liu
Yue Yu
Huaiqian You
Neeraj Tatikola
AI4CE
11
23
0
29 Dec 2022
Implicit Convolutional Kernels for Steerable CNNs
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
19
5
0
12 Dec 2022
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural
  Fields
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields
Rohith Agaram
Shaurya Dewan
Rahul Sajnani
A. Poulenard
Madhava Krishna
Srinath Sridhar
28
6
0
05 Dec 2022
Protein Language Models and Structure Prediction: Connection and
  Progression
Protein Language Models and Structure Prediction: Connection and Progression
Bozhen Hu
Jun-Xiong Xia
Jiangbin Zheng
Cheng Tan
Yufei Huang
Yongjie Xu
Stan Z. Li
19
40
0
30 Nov 2022
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
  Group Convolution
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution
A. Poulenard
M. Ovsjanikov
Leonidas J. Guibas
3DPC
22
2
0
29 Nov 2022
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
Pavlo Melnyk
Andreas Robinson
M. Felsberg
Maarten Wadenback
3DPC
16
2
0
26 Nov 2022
A Self-Attention Ansatz for Ab-initio Quantum Chemistry
A Self-Attention Ansatz for Ab-initio Quantum Chemistry
Ingrid von Glehn
J. Spencer
David Pfau
19
60
0
24 Nov 2022
Learning Regularized Positional Encoding for Molecular Prediction
Learning Regularized Positional Encoding for Molecular Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
14
1
0
23 Nov 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated
  Catalyst Design
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
22
7
0
22 Nov 2022
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
23
61
0
11 Nov 2022
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids
  Representations
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations
F. Pezzicoli
Guillaume Charpiat
François P. Landes
8
6
0
06 Nov 2022
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Alex Morehead
Jianlin Cheng
GNN
3DV
AI4CE
19
12
0
04 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in
  Materials Science
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
27
19
0
31 Oct 2022
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Siqi Miao
Yunan Luo
Miaoyuan Liu
Pan Li
11
24
0
30 Oct 2022
Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant
  Neural Networks
Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant Neural Networks
S. Balachandar
A. Poulenard
Congyue Deng
Leonidas J. Guibas
12
1
0
29 Oct 2022
Continual Vision-based Reinforcement Learning with Group Symmetries
Continual Vision-based Reinforcement Learning with Group Symmetries
Shiqi Liu
Mengdi Xu
Piede Huang
Yongkang Liu
K. Oguchi
Ding Zhao
CLL
VLM
40
10
0
21 Oct 2022
PEMP: Leveraging Physics Properties to Enhance Molecular Property
  Prediction
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
Yuancheng Sun
Yimeng Chen
Weizhi Ma
Wenhao Huang
Kang Liu
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
10
7
0
18 Oct 2022
Frame Mining: a Free Lunch for Learning Robotic Manipulation from 3D
  Point Clouds
Frame Mining: a Free Lunch for Learning Robotic Manipulation from 3D Point Clouds
Minghua Liu
Xuanlin Li
Z. Ling
Yangyan Li
Hao Su
29
31
0
14 Oct 2022
Learning Physical Dynamics with Subequivariant Graph Neural Networks
Learning Physical Dynamics with Subequivariant Graph Neural Networks
Jiaqi Han
Wenbing Huang
Hengbo Ma
Jiachen Li
J. Tenenbaum
Chuang Gan
AI4CE
PINN
27
43
0
13 Oct 2022
Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
Sourya Basu
P. Sattigeri
K. Ramamurthy
Vijil Chenthamarakshan
Kush R. Varshney
L. Varshney
Payel Das
8
18
0
13 Oct 2022
Why self-attention is Natural for Sequence-to-Sequence Problems? A
  Perspective from Symmetries
Why self-attention is Natural for Sequence-to-Sequence Problems? A Perspective from Symmetries
Chao Ma
Lexing Ying
17
2
0
13 Oct 2022
In What Ways Are Deep Neural Networks Invariant and How Should We
  Measure This?
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
35
8
0
07 Oct 2022
Equivariant Shape-Conditioned Generation of 3D Molecules for
  Ligand-Based Drug Design
Equivariant Shape-Conditioned Generation of 3D Molecules for Ligand-Based Drug Design
Keir Adams
Connor W. Coley
34
25
0
06 Oct 2022
Coarse-to-Fine Point Cloud Registration with SE(3)-Equivariant
  Representations
Coarse-to-Fine Point Cloud Registration with SE(3)-Equivariant Representations
Chengxuan Lin
Tung-I Chen
Hsin-Ying Lee
Wen-Chin Chen
Winston H. Hsu
3DPC
8
11
0
05 Oct 2022
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational)
  Autoencoder in Fourier Space
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational) Autoencoder in Fourier Space
Gian Marco Visani
Michael N. Pun
Arman Angaji
Armita Nourmohammad
BDL
19
3
0
30 Sep 2022
Equivariant Energy-Guided SDE for Inverse Molecular Design
Equivariant Energy-Guided SDE for Inverse Molecular Design
Fan Bao
Min Zhao
Zhongkai Hao
Pei‐Yun Li
Chongxuan Li
Jun Zhu
DiffM
179
63
0
30 Sep 2022
Improving Molecular Pretraining with Complementary Featurizations
Improving Molecular Pretraining with Complementary Featurizations
Yanqiao Zhu
Dingshuo Chen
Yuanqi Du
Yingze Wang
Qiang Liu
Shu Wu
AI4CE
28
6
0
29 Sep 2022
Machine learning and invariant theory
Machine learning and invariant theory
Ben Blum-Smith
Soledad Villar
AI4CE
23
15
0
29 Sep 2022
A Simple Strategy to Provable Invariance via Orbit Mapping
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Deep learning for reconstructing protein structures from cryo-EM density
  maps: recent advances and future directions
Deep learning for reconstructing protein structures from cryo-EM density maps: recent advances and future directions
Nabin Giri
Rajashree Roy
Jianlin Cheng
3DV
14
40
0
16 Sep 2022
SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
  Representation
SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud Representation
Z. Su
Max Welling
M. Pietikäinen
Li Liu
3DPC
22
11
0
13 Sep 2022
Previous
123456789
Next