Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.11287
Cited By
Discovering Symbolic Models from Deep Learning with Inductive Biases
19 June 2020
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Discovering Symbolic Models from Deep Learning with Inductive Biases"
28 / 78 papers shown
Title
Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials
Xiaolong He
Jiun-Shyan Chen
AI4CE
18
48
0
01 May 2022
Taylor Genetic Programming for Symbolic Regression
Baihe He
Qiang Lu
Qingyun Yang
Jake Luo
Zhiguang Wang
21
29
0
28 Apr 2022
gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics Identification
Xiaolong He
Youngsoo Choi
William D. Fries
Jonathan Belof
Jiun-Shyan Chen
AI4CE
9
36
0
26 Apr 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
31
67
0
16 Apr 2022
SELFIES and the future of molecular string representations
Mario Krenn
Qianxiang Ai
Senja Barthel
Nessa Carson
Angelo Frei
...
Andrew Wang
Andrew D. White
A. Young
Rose Yu
A. Aspuru‐Guzik
22
146
0
31 Mar 2022
Simulating Liquids with Graph Networks
Jonathan Klimesch
Philipp Holl
Nils Thuerey
GNN
AI4CE
17
8
0
14 Mar 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
37
18
0
13 Mar 2022
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
25
31
0
03 Mar 2022
Dynamic Relation Discovery and Utilization in Multi-Entity Time Series Forecasting
Lin Huang
Lijun Wu
Jia Zhang
Jiang Bian
Tie-Yan Liu
AI4TS
26
2
0
18 Feb 2022
Forecasting Global Weather with Graph Neural Networks
R. Keisler
AI4Cl
26
159
0
15 Feb 2022
Learning Mechanically Driven Emergent Behavior with Message Passing Neural Networks
Peerasait Prachaseree
Emma Lejeune
PINN
AI4CE
33
11
0
03 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
14
196
0
31 Jan 2022
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning
Chengping Rao
Pu Ren
Yang Liu
Hao-Lun Sun
AI4CE
35
26
0
28 Jan 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
25
26
0
25 Jan 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects
Jinhyung D. Park
Dohae Lee
In-Kwon Lee
3DPC
AI4CE
22
2
0
07 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
65
26
0
06 Dec 2021
Discovering Latent Representations of Relations for Interacting Systems
Dohae Lee
Young-Jin Oh
In-Kwon Lee
BDL
19
1
0
10 Nov 2021
Lagrangian Neural Network with Differentiable Symmetries and Relational Inductive Bias
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
41
4
0
07 Oct 2021
An Extensible Benchmark Suite for Learning to Simulate Physical Systems
Karl Otness
Arvi Gjoka
Joan Bruna
Daniele Panozzo
Benjamin Peherstorfer
T. Schneider
Denis Zorin
11
23
0
09 Aug 2021
Neural Symbolic Regression that Scales
Luca Biggio
Tommaso Bendinelli
Alexander Neitz
Aurélien Lucchi
Giambattista Parascandolo
31
167
0
11 Jun 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
60
17
0
23 Apr 2021
Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution
Omer San
Adil Rasheed
T. Kvamsdal
40
50
0
26 Mar 2021
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
125
422
0
10 Mar 2020
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
180
83
0
12 Sep 2019
Machine learning for neural decoding
Joshua I. Glaser
Ari S. Benjamin
Raeed H. Chowdhury
M. Perich
L. Miller
Konrad Paul Kording
25
241
0
02 Aug 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
236
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
263
1,400
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
236
3,234
0
24 Nov 2016
Previous
1
2