ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11478
  4. Cited By
Representation via Representations: Domain Generalization via
  Adversarially Learned Invariant Representations

Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations

20 June 2020
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
    OOD
    FaML
ArXivPDFHTML

Papers citing "Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations"

10 / 10 papers shown
Title
Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain
  Generalization
Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain Generalization
Yumeng Li
Dan Zhang
M. Keuper
Anna Khoreva
40
10
0
02 Jul 2023
Reinforcement Learning with Stepwise Fairness Constraints
Reinforcement Learning with Stepwise Fairness Constraints
Zhun Deng
He Sun
Zhiwei Steven Wu
Linjun Zhang
David C. Parkes
FaML
OffRL
35
11
0
08 Nov 2022
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
Anthony Sicilia
Katherine Atwell
Malihe Alikhani
Seong Jae Hwang
BDL
46
9
0
12 Jul 2022
Discovery of New Multi-Level Features for Domain Generalization via
  Knowledge Corruption
Discovery of New Multi-Level Features for Domain Generalization via Knowledge Corruption
A. Frikha
Denis Krompass
Volker Tresp
OOD
30
1
0
09 Sep 2021
An Empirical Framework for Domain Generalization in Clinical Settings
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
15
59
0
20 Mar 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
37
980
0
03 Mar 2021
When and How Mixup Improves Calibration
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Y. Zou
UQCV
20
67
0
11 Feb 2021
Empirical or Invariant Risk Minimization? A Sample Complexity
  Perspective
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
27
78
0
30 Oct 2020
Cross-study learning for generalist and specialist predictions
Cross-study learning for generalist and specialist predictions
Boyu Ren
Prasad Patil
Francesca Dominici
Giovanni Parmigiani
L. Trippa
17
10
0
24 Jul 2020
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
224
673
0
17 Feb 2018
1