ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13092
  4. Cited By
Multi-Class Uncertainty Calibration via Mutual Information
  Maximization-based Binning

Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning

23 June 2020
Kanil Patel
William H. Beluch
Binh Yang
Michael Pfeiffer
Dan Zhang
    UQCV
ArXivPDFHTML

Papers citing "Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning"

14 / 14 papers shown
Title
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
71
1
0
24 Feb 2025
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Combining Priors with Experience: Confidence Calibration Based on Binomial Process Modeling
Jinzong Dong
Zhaohui Jiang
Dong Pan
Haoyang Yu
56
0
0
14 Dec 2024
Confidence Calibration of Classifiers with Many Classes
Confidence Calibration of Classifiers with Many Classes
Adrien LeCoz
Stéphane Herbin
Faouzi Adjed
UQCV
37
1
0
05 Nov 2024
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Fei Zhu
Xu-Yao Zhang
Zhen Cheng
Cheng-Lin Liu
UQCV
46
10
0
05 Mar 2024
Rethinking Confidence Calibration for Failure Prediction
Rethinking Confidence Calibration for Failure Prediction
Fei Zhu
Zhen Cheng
Xu-Yao Zhang
Cheng-Lin Liu
UQCV
14
39
0
06 Mar 2023
Layer-Stack Temperature Scaling
Layer-Stack Temperature Scaling
Amr Khalifa
Michael C. Mozer
Hanie Sedghi
Behnam Neyshabur
Ibrahim M. Alabdulmohsin
75
2
0
18 Nov 2022
Combining Human Predictions with Model Probabilities via Confusion
  Matrices and Calibration
Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration
Gavin Kerrigan
Padhraic Smyth
M. Steyvers
22
46
0
29 Sep 2021
Improving Uncertainty of Deep Learning-based Object Classification on
  Radar Spectra using Label Smoothing
Improving Uncertainty of Deep Learning-based Object Classification on Radar Spectra using Label Smoothing
Kanil Patel
William H. Beluch
K. Rambach
Michael Pfeiffer
B. Yang
UQCV
27
9
0
27 Sep 2021
FairCal: Fairness Calibration for Face Verification
FairCal: Fairness Calibration for Face Verification
Tiago Salvador
Stephanie Cairns
Vikram S. Voleti
Noah Marshall
Adam M. Oberman
FaML
17
20
0
07 Jun 2021
Investigation of Uncertainty of Deep Learning-based Object
  Classification on Radar Spectra
Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
Kanil Patel
William H. Beluch
K. Rambach
Adriana-Eliza Cozma
Michael Pfeiffer
Bin Yang
EDL
UQCV
16
5
0
01 Jun 2021
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Xingchen Ma
Matthew B. Blaschko
15
34
0
10 May 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,216
0
16 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1