Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2006.13554
Cited By
Normalized Loss Functions for Deep Learning with Noisy Labels
24 June 2020
Xingjun Ma
Hanxun Huang
Yisen Wang
Simone Romano
S. Erfani
James Bailey
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Normalized Loss Functions for Deep Learning with Noisy Labels"
50 / 220 papers shown
Title
Semi-supervised Learning using Robust Loss
Wenhui Cui
H. Akrami
Anand A. Joshi
Richard M. Leahy
OOD
64
4
0
03 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
137
114
0
28 Feb 2022
FUN-SIS: a Fully UNsupervised approach for Surgical Instrument Segmentation
Luca Sestini
Benoit Rosa
Elena De Momi
G. Ferrigno
N. Padoy
73
35
0
16 Feb 2022
CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
NoLa
147
38
0
11 Feb 2022
Backdoor Defense via Decoupling the Training Process
Kunzhe Huang
Yiming Li
Baoyuan Wu
Zhan Qin
Kui Ren
AAML
FedML
83
209
0
05 Feb 2022
PARS: Pseudo-Label Aware Robust Sample Selection for Learning with Noisy Labels
A. Goel
Yunlong Jiao
Jordan Massiah
NoLa
90
9
0
26 Jan 2022
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
Dixian Zhu
Yiming Ying
Tianbao Yang
184
12
0
30 Dec 2021
One-Step Abductive Multi-Target Learning with Diverse Noisy Label Samples
Yongquan Yang
59
0
0
08 Dec 2021
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
138
22
0
29 Nov 2021
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
Chen Feng
Georgios Tzimiropoulos
Ioannis Patras
NoLa
114
20
0
22 Nov 2021
Constrained Instance and Class Reweighting for Robust Learning under Label Noise
Abhishek Kumar
Ehsan Amid
NoLa
96
20
0
09 Nov 2021
Improved Regularization and Robustness for Fine-tuning in Neural Networks
Dongyue Li
Hongyang R. Zhang
NoLa
166
57
0
08 Nov 2021
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Jeongeun Park
Seungyoung Shin
Sangheum Hwang
Sungjoon Choi
111
6
0
02 Nov 2021
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression
Jiabo He
S. Erfani
Xingjun Ma
James Bailey
Ying Chi
Xiansheng Hua
165
273
0
26 Oct 2021
PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels
F. Cordeiro
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
89
18
0
22 Oct 2021
One-Step Abductive Multi-Target Learning with Diverse Noisy Samples and Its Application to Tumour Segmentation for Breast Cancer
Yongquan Yang
Fengling Li
Yani Wei
Jie Chen
Ning Chen
Mohammad H. Alobaidi
Hong Bu
273
9
0
20 Oct 2021
Consistency Regularization Can Improve Robustness to Label Noise
Erik Englesson
Hossein Azizpour
NoLa
462
21
0
04 Oct 2021
Learning to Aggregate and Refine Noisy Labels for Visual Sentiment Analysis
Wei-wei Zhu
Zihe Zheng
Haitian Zheng
Hanjia Lyu
Jiebo Luo
NoLa
88
1
0
15 Sep 2021
Confidence Adaptive Regularization for Deep Learning with Noisy Labels
Yangdi Lu
Yang Bo
Wenbo He
NoLa
93
10
0
18 Aug 2021
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan
Jun Xia
Lirong Wu
Stan Z. Li
NoLa
186
136
0
05 Aug 2021
Learning with Noisy Labels via Sparse Regularization
Xiong Zhou
Xianming Liu
Chenyang Wang
Deming Zhai
Junjun Jiang
Xiangyang Ji
NoLa
133
59
0
31 Jul 2021
Understanding and Improving Early Stopping for Learning with Noisy Labels
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
130
239
0
30 Jun 2021
Adaptive Sample Selection for Robust Learning under Label Noise
Deep Patel
P. Sastry
OOD
NoLa
127
36
0
29 Jun 2021
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise
Jianguo Huang
Lue Tao
Renchunzi Xie
Bo An
NoLa
133
93
0
21 Jun 2021
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
135
11
0
18 Jun 2021
Noise-robust Graph Learning by Estimating and Leveraging Pairwise Interactions
Xuefeng Du
Tian Bian
Yu Rong
Bo Han
Tongliang Liu
Qifeng Bai
Wenbing Huang
Yixuan Li
Junzhou Huang
NoLa
117
17
0
14 Jun 2021
Influential Rank: A New Perspective of Post-training for Robust Model against Noisy Labels
Seulki Park
Hwanjun Song
Daeho Um
D. Jo
Sangdoo Yun
J. Choi
NoLa
132
0
0
14 Jun 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
244
83
0
08 Jun 2021
Asymmetric Loss Functions for Learning with Noisy Labels
Xiong Zhou
Xianming Liu
Junjun Jiang
Xin Gao
Xiangyang Ji
NoLa
100
75
0
06 Jun 2021
Not All Knowledge Is Created Equal: Mutual Distillation of Confident Knowledge
Ziyun Li
Xinshao Wang
Diane Hu
N. Robertson
David Clifton
Christoph Meinel
Haojin Yang
106
12
0
02 Jun 2021
Instance Correction for Learning with Open-set Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Biwei Huang
Jun Yu
Gang Niu
Masashi Sugiyama
NoLa
92
13
0
01 Jun 2021
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Biwei Huang
Jun Yu
Gang Niu
Masashi Sugiyama
NoLa
119
123
0
01 Jun 2021
Combining resampling and reweighting for faithful stochastic optimization
Jing An
Lexing Ying
69
1
0
31 May 2021
Using Early-Learning Regularization to Classify Real-World Noisy Data
Alessio Galatolo
Alfred Nilsson
Roderick Karlemstrand
Yineng Wang
NoLa
64
1
0
27 May 2021
Training Classifiers that are Universally Robust to All Label Noise Levels
Jingyi Xu
Tony Q.S. Quek
Kai Fong Ernest Chong
NoLa
72
2
0
27 May 2021
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network
Shuo Yang
Erkun Yang
Bo Han
Yang Liu
Min Xu
Gang Niu
Tongliang Liu
NoLa
BDL
123
45
0
27 May 2021
Joint Text and Label Generation for Spoken Language Understanding
Yang Li
Ben Athiwaratkun
Cicero Nogueira dos Santos
Bing Xiang
90
0
0
11 May 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson
Hossein Azizpour
NoLa
201
117
0
10 May 2021
An Exploration into why Output Regularization Mitigates Label Noise
N. Shoham
Tomer Avidor
Nadav Tal-Israel
NoLa
43
0
0
26 Apr 2021
A Framework using Contrastive Learning for Classification with Noisy Labels
Madalina Ciortan
R. Dupuis
Thomas Peel
VLM
NoLa
67
12
0
19 Apr 2021
Do We Really Need Gold Samples for Sample Weighting Under Label Noise?
Aritra Ghosh
Andrew Lan
NoLa
110
11
0
19 Apr 2021
Contrastive Learning Improves Model Robustness Under Label Noise
Aritra Ghosh
Andrew Lan
NoLa
99
60
0
19 Apr 2021
Joint Negative and Positive Learning for Noisy Labels
Youngdong Kim
Juseung Yun
Hyounguk Shon
Junmo Kim
NoLa
93
69
0
14 Apr 2021
Exponentiated Gradient Reweighting for Robust Training Under Label Noise and Beyond
Negin Majidi
Ehsan Amid
Hossein Talebi
Manfred K. Warmuth
NoLa
84
19
0
03 Apr 2021
Learning from Noisy Labels via Dynamic Loss Thresholding
Hao Yang
Youzhi Jin
Zi-Hua Li
Deng-Bao Wang
Lei Miao
Xin Geng
Min-Ling Zhang
NoLa
AI4CE
111
10
0
01 Apr 2021
Approximating Instance-Dependent Noise via Instance-Confidence Embedding
Yivan Zhang
Masashi Sugiyama
87
8
0
25 Mar 2021
Detecting Label Noise via Leave-One-Out Cross-Validation
Yu-Hang Tang
Yuanran Zhu
W. A. Jong
86
3
0
21 Mar 2021
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment
F. Cordeiro
Ragav Sachdeva
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
118
90
0
06 Mar 2021
Searching for Robustness: Loss Learning for Noisy Classification Tasks
Boyan Gao
Henry Gouk
Timothy M. Hospedales
OOD
NoLa
118
20
0
27 Feb 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
189
157
0
11 Feb 2021
Previous
1
2
3
4
5
Next