ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.13570
  4. Cited By
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
v1v2v3 (latest)

Hyperparameter Ensembles for Robustness and Uncertainty Quantification

Neural Information Processing Systems (NeurIPS), 2020
24 June 2020
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Hyperparameter Ensembles for Robustness and Uncertainty Quantification"

41 / 141 papers shown
Title
Combining Different V1 Brain Model Variants to Improve Robustness to
  Image Corruptions in CNNs
Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs
A. Baidya
Joel Dapello
J. DiCarlo
Tiago Marques
AAML
117
6
0
20 Oct 2021
Balancing Value Underestimation and Overestimation with Realistic
  Actor-Critic
Balancing Value Underestimation and Overestimation with Realistic Actor-Critic
Sicen Li
Qinyun Tang
G. Wang
Xinmeng Ma
Li-quan Wang
OffRL
169
4
0
19 Oct 2021
Combining Diverse Feature Priors
Combining Diverse Feature Priors
Saachi Jain
Dimitris Tsipras
Aleksander Madry
182
15
0
15 Oct 2021
Dense Uncertainty Estimation
Dense Uncertainty Estimation
Jing Zhang
Yuchao Dai
Mochu Xiang
Deng-Ping Fan
Peyman Moghadam
Mingyi He
Christian J. Walder
Kaihao Zhang
Mehrtash Harandi
Nick Barnes
UQCVBDL
231
11
0
13 Oct 2021
Sparse MoEs meet Efficient Ensembles
Sparse MoEs meet Efficient Ensembles
J. Allingham
F. Wenzel
Zelda E. Mariet
Basil Mustafa
J. Puigcerver
...
Balaji Lakshminarayanan
Jasper Snoek
Dustin Tran
Carlos Riquelme Ruiz
Rodolphe Jenatton
MoE
173
22
0
07 Oct 2021
Uncertainty Quantification in Medical Image Segmentation with
  Multi-decoder U-Net
Uncertainty Quantification in Medical Image Segmentation with Multi-decoder U-Net
Yanwu Yang
Xutao Guo
Yiwei Pan
P. Shi
Haiyan Lv
Tingxia Ma
UQCV
123
9
0
15 Sep 2021
Multi-headed Neural Ensemble Search
Multi-headed Neural Ensemble Search
Ashwin Raaghav Narayanan
Arber Zela
Tonmoy Saikia
Thomas Brox
Katharina Eggensperger
UQCV
72
4
0
09 Jul 2021
Collaboration of Experts: Achieving 80% Top-1 Accuracy on ImageNet with
  100M FLOPs
Collaboration of Experts: Achieving 80% Top-1 Accuracy on ImageNet with 100M FLOPsInternational Conference on Machine Learning (ICML), 2021
Yikang Zhang
Zhuo Chen
Zhaobai Zhong
MoE
142
11
0
08 Jul 2021
Predicting with Confidence on Unseen Distributions
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCVOOD
226
135
0
07 Jul 2021
Intrinsic uncertainties and where to find them
Intrinsic uncertainties and where to find them
Francesco Farina
Lawrence Phillips
Nicola J. Richmond
UQCVUD
82
1
0
06 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep LearningNeural Information Processing Systems (NeurIPS), 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDLUQCV
530
366
0
28 Jun 2021
Deep Ensembling with No Overhead for either Training or Testing: The
  All-Round Blessings of Dynamic Sparsity
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic SparsityInternational Conference on Learning Representations (ICLR), 2021
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zinan Lin
Decebal Constantin Mocanu
OOD
311
62
0
28 Jun 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are BayesianNeural Information Processing Systems (NeurIPS), 2021
Francesco DÁngelo
Vincent Fortuin
UQCVBDL
310
113
0
22 Jun 2021
Well-tuned Simple Nets Excel on Tabular Datasets
Well-tuned Simple Nets Excel on Tabular DatasetsNeural Information Processing Systems (NeurIPS), 2021
Arlind Kadra
Marius Lindauer
Katharina Eggensperger
Josif Grabocka
138
228
0
21 Jun 2021
On Stein Variational Neural Network Ensembles
On Stein Variational Neural Network Ensembles
Francesco DÁngelo
Vincent Fortuin
F. Wenzel
UQCVBDL
175
30
0
20 Jun 2021
Deep Learning Through the Lens of Example Difficulty
Deep Learning Through the Lens of Example DifficultyNeural Information Processing Systems (NeurIPS), 2021
R. Baldock
Hartmut Maennel
Behnam Neyshabur
191
176
0
17 Jun 2021
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
270
421
0
15 Jun 2021
Ex uno plures: Splitting One Model into an Ensemble of Subnetworks
Ex uno plures: Splitting One Model into an Ensemble of Subnetworks
Zhilu Zhang
Vianne R. Gao
M. Sabuncu
UQCV
165
7
0
09 Jun 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
  Learning
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCVELM
254
106
0
07 Jun 2021
Greedy Bayesian Posterior Approximation with Deep Ensembles
Greedy Bayesian Posterior Approximation with Deep Ensembles
A. Tiulpin
Matthew B. Blaschko
UQCVFedML
168
4
0
29 May 2021
Deep Ensembles from a Bayesian Perspective
Deep Ensembles from a Bayesian Perspective
L. Hoffmann
Clemens Elster
UDBDLUQCV
162
46
0
27 May 2021
Orthogonal Ensemble Networks for Biomedical Image Segmentation
Orthogonal Ensemble Networks for Biomedical Image SegmentationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
UQCV
118
24
0
22 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A ReviewInternational Statistical Review (ISR), 2021
Vincent Fortuin
UQCVBDL
290
154
0
14 May 2021
Agree to Disagree: When Deep Learning Models With Identical
  Architectures Produce Distinct Explanations
Agree to Disagree: When Deep Learning Models With Identical Architectures Produce Distinct ExplanationsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Matthew Watson
Bashar Awwad Shiekh Hasan
Noura Al Moubayed
OOD
89
24
0
14 May 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCVBDL
178
19
0
10 May 2021
Does Your Dermatology Classifier Know What It Doesn't Know? Detecting
  the Long-Tail of Unseen Conditions
Does Your Dermatology Classifier Know What It Doesn't Know? Detecting the Long-Tail of Unseen Conditions
Abhijit Guha Roy
Jie Jessie Ren
Shekoofeh Azizi
Aaron Loh
Vivek Natarajan
...
Yao Xiao
taylan. cemgil
Alan Karthikesalingam
Balaji Lakshminarayanan
Jim Winkens
164
115
0
08 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
104
1
0
28 Mar 2021
Deep Ensemble Collaborative Learning by using Knowledge-transfer Graph
  for Fine-grained Object Classification
Deep Ensemble Collaborative Learning by using Knowledge-transfer Graph for Fine-grained Object Classification
Naoki Okamoto
Soma Minami
Tsubasa Hirakawa
Takayoshi Yamashita
H. Fujiyoshi
FedML
87
2
0
27 Mar 2021
Robustness via Cross-Domain Ensembles
Robustness via Cross-Domain EnsemblesIEEE International Conference on Computer Vision (ICCV), 2021
Teresa Yeo
Oğuzhan Fatih Kar
Alexander Sax
Amir Zamir
UQCVOOD
125
29
0
19 Mar 2021
MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks
MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep SubnetworksIEEE International Conference on Computer Vision (ICCV), 2021
Alexandre Ramé
Rémy Sun
Matthieu Cord
UQCV
247
63
0
10 Mar 2021
NOMU: Neural Optimization-based Model Uncertainty
NOMU: Neural Optimization-based Model UncertaintyInternational Conference on Machine Learning (ICML), 2021
Jakob Heiss
Jakob Weissteiner
Hanna Wutte
Sven Seuken
Josef Teichmann
BDL
281
22
0
26 Feb 2021
BORE: Bayesian Optimization by Density-Ratio Estimation
BORE: Bayesian Optimization by Density-Ratio EstimationInternational Conference on Machine Learning (ICML), 2021
Louis C. Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
F. Ramos
147
32
0
17 Feb 2021
Bayesian Neural Network Priors Revisited
Bayesian Neural Network Priors RevisitedInternational Conference on Learning Representations (ICLR), 2021
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDLUQCV
237
150
0
12 Feb 2021
Wisdom of Committees: An Overlooked Approach To Faster and More Accurate
  Models
Wisdom of Committees: An Overlooked Approach To Faster and More Accurate ModelsInternational Conference on Learning Representations (ICLR), 2020
Xiaofang Wang
Dan Kondratyuk
Eric Christiansen
Kris Kitani
Y. Alon
Elad Eban
338
57
0
03 Dec 2020
Underspecification Presents Challenges for Credibility in Modern Machine
  Learning
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
313
746
0
06 Nov 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your CalibrationInternational Conference on Learning Representations (ICLR), 2020
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
242
70
0
19 Oct 2020
Deep Ensembles for Low-Data Transfer Learning
Deep Ensembles for Low-Data Transfer Learning
Basil Mustafa
C. Riquelme
J. Puigcerver
andAndré Susano Pinto
Daniel Keysers
N. Houlsby
FedMLOOD
110
25
0
14 Oct 2020
Training independent subnetworks for robust prediction
Training independent subnetworks for robust prediction
Marton Havasi
Rodolphe Jenatton
Stanislav Fort
Jeremiah Zhe Liu
Jasper Snoek
Balaji Lakshminarayanan
Andrew M. Dai
Dustin Tran
UQCVOOD
238
225
0
13 Oct 2020
BayesAdapter: Being Bayesian, Inexpensively and Reliably, via Bayesian
  Fine-tuning
BayesAdapter: Being Bayesian, Inexpensively and Reliably, via Bayesian Fine-tuningAsian Conference on Machine Learning (ACML), 2020
Zhijie Deng
Jun Zhu
BDL
174
9
0
05 Oct 2020
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Sheheryar Zaidi
Arber Zela
T. Elsken
Chris Holmes
Katharina Eggensperger
Yee Whye Teh
OODUQCV
186
85
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCVOODBDL
285
112
0
15 Jun 2020
Previous
123