Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.14748
Cited By
Proper Network Interpretability Helps Adversarial Robustness in Classification
26 June 2020
Akhilan Boopathy
Sijia Liu
Gaoyuan Zhang
Cynthia Liu
Pin-Yu Chen
Shiyu Chang
Luca Daniel
AAML
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Proper Network Interpretability Helps Adversarial Robustness in Classification"
36 / 36 papers shown
Title
Impact of Adversarial Attacks on Deep Learning Model Explainability
Gazi Nazia Nur
Mohammad Ahnaf Sadat
AAML
FAtt
77
0
0
15 Dec 2024
Certified
ℓ
2
\ell_2
ℓ
2
Attribution Robustness via Uniformly Smoothed Attributions
Fan Wang
Adams Wai-Kin Kong
40
1
0
10 May 2024
PASA: Attack Agnostic Unsupervised Adversarial Detection using Prediction & Attribution Sensitivity Analysis
Dipkamal Bhusal
Md Tanvirul Alam
M. K. Veerabhadran
Michael Clifford
Sara Rampazzi
Nidhi Rastogi
AAML
36
1
0
12 Apr 2024
Learning the irreversible progression trajectory of Alzheimer's disease
Yipei Wang
Bing He
S. Risacher
A. Saykin
Jingwen Yan
Xiaoqian Wang
38
0
0
10 Mar 2024
Are Classification Robustness and Explanation Robustness Really Strongly Correlated? An Analysis Through Input Loss Landscape
Tiejin Chen
Wenwang Huang
Linsey Pang
Dongsheng Luo
Hua Wei
OOD
41
0
0
09 Mar 2024
Gradient weighting for speaker verification in extremely low Signal-to-Noise Ratio
Yi Ma
Kong Aik Lee
Ville Hautamaki
Meng Ge
Haizhou Li
31
0
0
05 Jan 2024
Stability Guarantees for Feature Attributions with Multiplicative Smoothing
Anton Xue
Rajeev Alur
Eric Wong
36
5
0
12 Jul 2023
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
42
63
0
06 Jun 2023
Improve Video Representation with Temporal Adversarial Augmentation
Jinhao Duan
Quanfu Fan
Hao-Ran Cheng
Xiaoshuang Shi
Kaidi Xu
AAML
AI4TS
ViT
23
2
0
28 Apr 2023
A Practical Upper Bound for the Worst-Case Attribution Deviations
Fan Wang
A. Kong
AAML
44
4
0
01 Mar 2023
Provable Robust Saliency-based Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
AAML
FAtt
27
0
0
28 Dec 2022
Going Beyond XAI: A Systematic Survey for Explanation-Guided Learning
Yuyang Gao
Siyi Gu
Junji Jiang
S. Hong
Dazhou Yu
Liang Zhao
24
39
0
07 Dec 2022
Interpretations Cannot Be Trusted: Stealthy and Effective Adversarial Perturbations against Interpretable Deep Learning
Eldor Abdukhamidov
Mohammed Abuhamad
Simon S. Woo
Eric Chan-Tin
Tamer Abuhmed
AAML
25
9
0
29 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
Visual Prompting for Adversarial Robustness
Aochuan Chen
P. Lorenz
Yuguang Yao
Pin-Yu Chen
Sijia Liu
VLM
VPVLM
25
32
0
12 Oct 2022
PointACL:Adversarial Contrastive Learning for Robust Point Clouds Representation under Adversarial Attack
Junxuan Huang
Yatong An
Lu Cheng
Bai Chen
Junsong Yuan
Chunming Qiao
3DPC
27
1
0
14 Sep 2022
Saliency Guided Adversarial Training for Learning Generalizable Features with Applications to Medical Imaging Classification System
Xin Li
Yao Qiang
Chengyin Li
Sijia Liu
D. Zhu
OOD
MedIm
29
4
0
09 Sep 2022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
Tilman Raukur
A. Ho
Stephen Casper
Dylan Hadfield-Menell
AAML
AI4CE
20
124
0
27 Jul 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
21
4
0
15 Jun 2022
On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective
M. Serrurier
Franck Mamalet
Thomas Fel
Louis Bethune
Thibaut Boissin
AAML
FAtt
26
4
0
14 Jun 2022
Exploiting the Relationship Between Kendall's Rank Correlation and Cosine Similarity for Attribution Protection
Fan Wang
A. Kong
61
10
0
15 May 2022
Reverse Engineering of Imperceptible Adversarial Image Perturbations
Yifan Gong
Yuguang Yao
Yize Li
Yimeng Zhang
Xiaoming Liu
X. Lin
Sijia Liu
AAML
39
20
0
26 Mar 2022
Adversarial Training for Improving Model Robustness? Look at Both Prediction and Interpretation
Hanjie Chen
Yangfeng Ji
OOD
AAML
VLM
24
21
0
23 Mar 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
23
41
0
15 Feb 2022
Aligning Eyes between Humans and Deep Neural Network through Interactive Attention Alignment
Yuyang Gao
Tong Sun
Liang Zhao
Sungsoo Ray Hong
HAI
21
37
0
06 Feb 2022
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELM
XAI
26
395
0
20 Jan 2022
Interpretability Aware Model Training to Improve Robustness against Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease Classification
Merel Kuijs
C. Jutzeler
Bastian Alexander Rieck
Sarah C. Brüningk
OOD
13
1
0
15 Nov 2021
Self-Interpretable Model with TransformationEquivariant Interpretation
Yipei Wang
Xiaoqian Wang
29
23
0
09 Nov 2021
When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning?
Lijie Fan
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Chuang Gan
AAML
VLM
8
118
0
01 Nov 2021
DI-AA: An Interpretable White-box Attack for Fooling Deep Neural Networks
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
Jianhua Wang
Ricardo J. Rodríguez
AAML
17
28
0
14 Oct 2021
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Jon Vadillo
Roberto Santana
Jose A. Lozano
SILM
AAML
33
11
0
05 Jul 2021
The Definitions of Interpretability and Learning of Interpretable Models
Weishen Pan
Changshui Zhang
FaML
XAI
6
3
0
29 May 2021
Fooling Partial Dependence via Data Poisoning
Hubert Baniecki
Wojciech Kretowicz
P. Biecek
AAML
21
23
0
26 May 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Eric Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
66
22
0
12 Mar 2021
Quantifying the Preferential Direction of the Model Gradient in Adversarial Training With Projected Gradient Descent
Ricardo Bigolin Lanfredi
Joyce D. Schroeder
Tolga Tasdizen
16
11
0
10 Sep 2020
Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding
Mathew Monfort
Bowen Pan
K. Ramakrishnan
A. Andonian
Barry A. McNamara
A. Lascelles
Quanfu Fan
Dan Gutfreund
Rogerio Feris
A. Oliva
VLM
6
68
0
01 Nov 2019
1