ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16867
  4. Cited By
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey

Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey

30 June 2020
M. Rath
A. P. Condurache
    ViT
    AI4CE
ArXivPDFHTML

Papers citing "Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey"

11 / 11 papers shown
Title
FA-KPConv: Introducing Euclidean Symmetries to KPConv via Frame Averaging
FA-KPConv: Introducing Euclidean Symmetries to KPConv via Frame Averaging
Ali Alawieh
Alexandru P. Condurache
3DPC
51
0
0
07 May 2025
Knowledge-augmented Deep Learning and Its Applications: A Survey
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
12
17
0
30 Nov 2022
Model-Based Imitation Learning for Urban Driving
Model-Based Imitation Learning for Urban Driving
Anthony Hu
Gianluca Corrado
Nicolas Griffiths
Zak Murez
Corina Gurau
Hudson Yeo
Alex Kendall
R. Cipolla
Jamie Shotton
104
135
0
14 Oct 2022
Frame Averaging for Invariant and Equivariant Network Design
Frame Averaging for Invariant and Equivariant Network Design
Omri Puny
Matan Atzmon
Heli Ben-Hamu
Ishan Misra
Aditya Grover
Edward James Smith
Y. Lipman
FedML
33
90
0
07 Oct 2021
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy
Robin G. Walters
Yanchen Liu
Dashun Wang
Rose Yu
AI4CE
76
81
0
15 Sep 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
Group Equivariant Conditional Neural Processes
Group Equivariant Conditional Neural Processes
M. Kawano
Wataru Kumagai
Akiyoshi Sannai
Yusuke Iwasawa
Y. Matsuo
BDL
45
20
0
17 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
190
1,229
0
08 Jan 2021
Local Rotation Invariance in 3D CNNs
Local Rotation Invariance in 3D CNNs
Vincent Andrearczyk
Julien Fageot
Valentin Oreiller
X. Montet
A. Depeursinge
27
23
0
19 Mar 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
89
127
0
11 Mar 2020
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
149
308
0
05 Nov 2018
1