ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01754
  4. Cited By
Differentiable Causal Discovery from Interventional Data
v1v2 (latest)

Differentiable Causal Discovery from Interventional Data

3 July 2020
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
    CML
ArXiv (abs)PDFHTML

Papers citing "Differentiable Causal Discovery from Interventional Data"

50 / 135 papers shown
Title
On Discovery of Local Independence over Continuous Variables via Neural
  Contextual Decomposition
On Discovery of Local Independence over Continuous Variables via Neural Contextual Decomposition
Inwoo Hwang
Yunhyeok Kwak
Yeon-Ji Song
Byoung-Tak Zhang
Sanghack Lee
CML
35
7
0
12 May 2024
RealTCD: Temporal Causal Discovery from Interventional Data with Large
  Language Model
RealTCD: Temporal Causal Discovery from Interventional Data with Large Language Model
Peiwen Li
Xin Wang
Zeyang Zhang
Yuan Meng
Fang-lin Shen
Yue Li
Jialong Wang
Yang Li
Wenweu Zhu
121
6
0
23 Apr 2024
Automated Discovery of Functional Actual Causes in Complex Environments
Automated Discovery of Functional Actual Causes in Complex Environments
Caleb Chuck
Sankaran Vaidyanathan
Stephen Giguere
Amy Zhang
David Jensen
S. Niekum
CML
118
2
0
16 Apr 2024
Recursive Causal Discovery
Recursive Causal Discovery
Ehsan Mokhtarian
Sepehr Elahi
S. Akbari
Negar Kiyavash
CML
77
2
0
14 Mar 2024
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Georg Manten
Cecilia Casolo
E. Ferrucci
Søren Wengel Mogensen
C. Salvi
Niki Kilbertus
CMLBDL
246
12
0
28 Feb 2024
Learning Cyclic Causal Models from Incomplete Data
Learning Cyclic Causal Models from Incomplete Data
Muralikrishnna G. Sethuraman
Faramarz Fekri
OODCML
48
1
0
23 Feb 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
153
1
0
22 Feb 2024
Graph Structure Inference with BAM: Introducing the Bilinear Attention
  Mechanism
Graph Structure Inference with BAM: Introducing the Bilinear Attention Mechanism
Philipp Froehlich
Heinz Koeppl
GNN
55
2
0
12 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
131
7
0
02 Feb 2024
CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement
  Learning
CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning
Andreas Sauter
N. Botteghi
Erman Acar
Aske Plaat
CML
75
4
0
30 Jan 2024
Learning Unknown Intervention Targets in Structural Causal Models from
  Heterogeneous Data
Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data
Yuqin Yang
Saber Salehkaleybar
Negar Kiyavash
CML
43
1
0
11 Dec 2023
Stable Differentiable Causal Discovery
Stable Differentiable Causal Discovery
Achille Nazaret
Justin Hong
Elham Azizi
David M. Blei
CML
104
10
0
17 Nov 2023
Learning Linear Gaussian Polytree Models with Interventions
Learning Linear Gaussian Polytree Models with Interventions
D. Tramontano
L. Waldmann
Mathias Drton
Eliana Duarte
48
0
0
08 Nov 2023
Structured Neural Networks for Density Estimation and Causal Inference
Structured Neural Networks for Density Estimation and Causal Inference
Asic Q. Chen
Ruian Shi
Xiang Gao
Ricardo Baptista
Rahul G. Krishnan
CMLTPM
79
7
0
03 Nov 2023
Causal Modeling with Stationary Diffusions
Causal Modeling with Stationary Diffusions
Lars Lorch
Andreas Krause
Bernhard Schölkopf
DiffM
139
13
0
26 Oct 2023
Shortcuts for causal discovery of nonlinear models by score matching
Shortcuts for causal discovery of nonlinear models by score matching
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Francesco Locatello
CML
81
3
0
22 Oct 2023
CoLiDE: Concomitant Linear DAG Estimation
CoLiDE: Concomitant Linear DAG Estimation
S. S. Saboksayr
Gonzalo Mateos
Mariano Tepper
CML
77
5
0
04 Oct 2023
Constraint-Free Structure Learning with Smooth Acyclic Orientations
Constraint-Free Structure Learning with Smooth Acyclic Orientations
Riccardo Massidda
Francesco Landolfi
Martina Cinquini
Davide Bacciu
78
6
0
15 Sep 2023
Learning nonparametric DAGs with incremental information via high-order
  HSIC
Learning nonparametric DAGs with incremental information via high-order HSIC
Yafei Wang
Jianguo Liu
CML
33
0
0
11 Aug 2023
Causal Discovery with Language Models as Imperfect Experts
Causal Discovery with Language Models as Imperfect Experts
Stephanie Long
Alexandre Piché
Valentina Zantedeschi
Tibor Schuster
Alexandre Drouin
CML
107
40
0
05 Jul 2023
Causal Reinforcement Learning: A Survey
Causal Reinforcement Learning: A Survey
Zhi-Hong Deng
Jing Jiang
Guodong Long
Chen Zhang
CMLLRM
101
16
0
04 Jul 2023
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
  Noise Models
iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models
Tianyu Chen
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
CML
65
3
0
30 Jun 2023
What Went Wrong? Closing the Sim-to-Real Gap via Differentiable Causal
  Discovery
What Went Wrong? Closing the Sim-to-Real Gap via Differentiable Causal Discovery
Peide Huang
Xilun Zhang
Ziang Cao
Shiqi Liu
Mengdi Xu
Wenhao Ding
Jonathan M Francis
Bingqing Chen
Ding Zhao
113
25
0
28 Jun 2023
BISCUIT: Causal Representation Learning from Binary Interactions
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
77
31
0
16 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
170
65
0
01 Jun 2023
dotears: Scalable, consistent DAG estimation using observational and
  interventional data
dotears: Scalable, consistent DAG estimation using observational and interventional data
Albert Y Xue
Jingyou Rao
S. Sankararaman
Harold Pimentel
OODCML
47
4
0
30 May 2023
Discovering Causal Relations and Equations from Data
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINNAI4ClAI4CECML
108
77
0
21 May 2023
A Survey on Causal Discovery: Theory and Practice
A Survey on Causal Discovery: Theory and Practice
Alessio Zanga
Fabio Stella
CML
77
45
0
17 May 2023
DiscoGen: Learning to Discover Gene Regulatory Networks
DiscoGen: Learning to Discover Gene Regulatory Networks
Nan Rosemary Ke
Sara-Jane Dunn
J. Bornschein
Silvia Chiappa
Mélanie Rey
...
David Barrett
M. Botvinick
Anirudh Goyal
Michael C. Mozer
Danilo Jimenez Rezende
BDLCML
48
5
0
12 Apr 2023
Structure Learning with Continuous Optimization: A Sober Look and Beyond
Structure Learning with Continuous Optimization: A Sober Look and Beyond
Ignavier Ng
Erdun Gao
Kun Zhang
CML
101
21
0
04 Apr 2023
GFlowNets for AI-Driven Scientific Discovery
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
92
55
0
01 Feb 2023
DAG Learning on the Permutahedron
DAG Learning on the Permutahedron
Valentina Zantedeschi
Luca Franceschi
Jean Kaddour
Matt J. Kusner
Vlad Niculae
86
11
0
27 Jan 2023
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
NODAGS-Flow: Nonlinear Cyclic Causal Structure Learning
Muralikrishnna G. Sethuraman
Romain Lopez
Ramkumar Veppathur Mohan
Faramarz Fekri
Tommaso Biancalani
Jan-Christian Hütter
CML
79
12
0
04 Jan 2023
Deep Learning of Causal Structures in High Dimensions
Deep Learning of Causal Structures in High Dimensions
Kai Lagemann
C. Lagemann
B. Taschler
S. Mukherjee
CMLBDLAI4CE
59
30
0
09 Dec 2022
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal
  Discovery
Trust Your ∇\nabla∇: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
127
2
0
24 Nov 2022
Neural Bayesian Network Understudy
Neural Bayesian Network Understudy
Paloma Rabaey
Cedric De Boom
Thomas Demeester
BDLCML
63
0
0
15 Nov 2022
Federated Causal Discovery From Interventions
Federated Causal Discovery From Interventions
Amin Abyaneh
Nino Scherrer
Patrick Schwab
Stefan Bauer
Bernhard Schölkopf
Arash Mehrjou
FedML
43
0
0
07 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OODCMLDRL
100
39
0
07 Nov 2022
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and
  Variational Bayes
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDLCML
111
29
0
04 Nov 2022
CausalBench: A Large-scale Benchmark for Network Inference from
  Single-cell Perturbation Data
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
98
38
0
31 Oct 2022
Learning Latent Structural Causal Models
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
94
7
0
24 Oct 2022
Causal Structure Learning with Recommendation System
Causal Structure Learning with Recommendation System
Shuyuan Xu
Da Xu
Evren Körpeoglu
Sushant Kumar
Stephen D. Guo
Kannan Achan
Yongfeng Zhang
CML
77
6
0
19 Oct 2022
Interventional Causal Representation Learning
Interventional Causal Representation Learning
Kartik Ahuja
Divyat Mahajan
Yixin Wang
Yoshua Bengio
CML
154
95
0
24 Sep 2022
Normalizing Flows for Interventional Density Estimation
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
101
21
0
13 Sep 2022
On the Sparse DAG Structure Learning Based on Adaptive Lasso
On the Sparse DAG Structure Learning Based on Adaptive Lasso
Danru Xu
Erdun Gao
Wei Huang
Menghan Wang
Andy Song
Biwei Huang
CML
83
4
0
07 Sep 2022
Intrinsically Motivated Learning of Causal World Models
Intrinsically Motivated Learning of Causal World Models
Louis Annabi
CLLCMLDRLLRM
43
2
0
09 Aug 2022
Generalizing Goal-Conditioned Reinforcement Learning with Variational
  Causal Reasoning
Generalizing Goal-Conditioned Reinforcement Learning with Variational Causal Reasoning
Wenhao Ding
Haohong Lin
Yue Liu
Ding Zhao
LRM
93
40
0
19 Jul 2022
A Meta-Reinforcement Learning Algorithm for Causal Discovery
A Meta-Reinforcement Learning Algorithm for Causal Discovery
Andreas Sauter
Erman Acar
Vincent François-Lavet
CML
106
19
0
18 Jul 2022
Latent Variable Models for Bayesian Causal Discovery
Latent Variable Models for Bayesian Causal Discovery
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CMLBDL
60
1
0
12 Jul 2022
Variational Causal Dynamics: Discovering Modular World Models from
  Interventions
Variational Causal Dynamics: Discovering Modular World Models from Interventions
Anson Lei
Bernhard Schölkopf
Ingmar Posner
CML
57
9
0
22 Jun 2022
Previous
123
Next