Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.01754
Cited By
v1
v2 (latest)
Differentiable Causal Discovery from Interventional Data
3 July 2020
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Differentiable Causal Discovery from Interventional Data"
35 / 135 papers shown
Title
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CML
AI4CE
87
43
0
15 Jun 2022
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
67
31
0
13 Jun 2022
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
80
8
0
09 Jun 2022
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
98
50
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
112
22
0
03 Jun 2022
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
91
4
0
30 May 2022
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
Erdun Gao
Ignavier Ng
Biwei Huang
Li Shen
Wei Huang
Tongliang Liu
Kun Zhang
H. Bondell
CML
137
23
0
27 May 2022
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
116
65
0
25 May 2022
Towards efficient representation identification in supervised learning
Kartik Ahuja
Divyat Mahajan
Vasilis Syrgkanis
Ioannis Mitliagkas
CoGe
OOD
DRL
85
19
0
10 Apr 2022
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
99
131
0
30 Mar 2022
Differentiable DAG Sampling
Bertrand Charpentier
Simon Kibler
Stephan Günnemann
100
42
0
16 Mar 2022
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
89
23
0
04 Mar 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
150
50
0
03 Mar 2022
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
109
157
0
28 Feb 2022
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
87
17
0
07 Dec 2021
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
127
61
0
30 Nov 2021
Scalable Intervention Target Estimation in Linear Models
Burak Varici
Karthikeyan Shanmugam
P. Sattigeri
A. Tajer
CML
52
10
0
15 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
91
38
0
18 Oct 2021
Causal Explanations of Structural Causal Models
Matej Zevcević
Devendra Singh Dhami
Constantin Rothkopf
Kristian Kersting
LRM
54
3
0
05 Oct 2021
Optimization-based Causal Estimation from Heterogenous Environments
Mingzhang Yin
Yixin Wang
David M. Blei
OOD
123
18
0
24 Sep 2021
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
123
44
0
06 Sep 2021
Typing assumptions improve identification in causal discovery
P. Brouillard
Perouz Taslakian
Alexandre Lacoste
Sébastien Lachapelle
Alexandre Drouin
CML
84
13
0
22 Jul 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
99
72
0
22 Jul 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CML
OOD
104
141
0
21 Jul 2021
The Causal-Neural Connection: Expressiveness, Learnability, and Inference
K. Xia
Kai-Zhan Lee
Yoshua Bengio
Elias Bareinboim
CML
81
111
0
02 Jul 2021
On the Role of Entropy-based Loss for Learning Causal Structures with Continuous Optimization
Weilin Chen
Jie Qiao
Ruichu Cai
Zijian Li
CML
66
3
0
05 Jun 2021
Causal Graph Discovery from Self and Mutually Exciting Time Series
S. Wei
Yao Xie
C. Josef
Rishikesan Kamaleswaran
CML
89
2
0
04 Jun 2021
DiBS: Differentiable Bayesian Structure Learning
Lars Lorch
Jonas Rothfuss
Bernhard Schölkopf
Andreas Krause
95
91
0
25 May 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
85
142
0
26 Feb 2021
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
Matej Zečević
Devendra Singh Dhami
Athresh Karanam
S. Natarajan
Kristian Kersting
CML
TPM
89
33
0
20 Feb 2021
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CML
AI4TS
113
110
0
11 Feb 2021
Inference of Causal Effects when Control Variables are Unknown
Ludvig Hult
Dave Zachariah
CML
33
0
0
15 Dec 2020
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
105
38
0
23 Nov 2020
Previous
1
2
3